Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1992_1124983_3,
     author = {Kim, K. H. and Roush, F. W. and Wagoner, J. B.},
     title = {Automorphisms of the dimension group and gyration numbers},
     journal = {Journal of the American Mathematical Society},
     pages = {191--212},
     publisher = {mathdoc},
     volume = {05},
     number = {1},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1124983-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/}
}
                      
                      
                    TY - JOUR AU - Kim, K. H. AU - Roush, F. W. AU - Wagoner, J. B. TI - Automorphisms of the dimension group and gyration numbers JO - Journal of the American Mathematical Society PY - 1992 SP - 191 EP - 212 VL - 05 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/ DO - 10.1090/S0894-0347-1992-1124983-3 ID - 10_1090_S0894_0347_1992_1124983_3 ER -
%0 Journal Article %A Kim, K. H. %A Roush, F. W. %A Wagoner, J. B. %T Automorphisms of the dimension group and gyration numbers %J Journal of the American Mathematical Society %D 1992 %P 191-212 %V 05 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/ %R 10.1090/S0894-0347-1992-1124983-3 %F 10_1090_S0894_0347_1992_1124983_3
Kim, K. H.; Roush, F. W.; Wagoner, J. B. Automorphisms of the dimension group and gyration numbers. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 191-212. doi: 10.1090/S0894-0347-1992-1124983-3
[1] Strong shift equivalence of 2Ã2 matrices of nonnegative integers Ergodic Theory Dynam. Systems 1983 501 508
[2] , Algebraic shift equivalence and primitive matrices Trans. Amer. Math. Soc. 1993 121 149
[3] , Periodic points and automorphisms of the shift Trans. Amer. Math. Soc. 1987 125 149
[4] , , The automorphism group of a shift of finite type Trans. Amer. Math. Soc. 1988 71 114
[5] , Topological Markov chains with dicyclic dimension groups J. Reine Angew. Math. 1980 44 51
[6] , , Ergodic theory on compact spaces 1976
[7] Dimensions and ð¶*-algebras 1981
[8] Homology and dynamical systems 1982
[9] Positive matrices and dimension groups affiliated to ð¶*-algebras and topological Markov chains J. Operator Theory 1981 55 74
[10] Endomorphisms and automorphisms of the shift dynamical system Math. Systems Theory 1969 320 375
[11] On dimension functions and topological Markov chains Invent. Math. 1980 239 250
[12] , Some results on decidability of shift equivalence J. Combin. Inform. System Sci. 1979 123 146
[13] , Williamsâs conjecture is false for reducible subshifts J. Amer. Math. Soc. 1992 213 215
[14] Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts 1988 564 607
[15] , Classification problems in ergodic theory 1982
[16] , Block coding and a zeta function for finite Markov chains Proc. London Math. Soc. (3) 1977 483 495
[17] Markov partitions and ð¾â Inst. Hautes Ãtudes Sci. Publ. Math. 1987 91 129
[18] Triangle identities and symmetries of a subshift of finite type Pacific J. Math. 1990 181 205
[19] Eventual finite order generation for the kernel of the dimension group representation Trans. Amer. Math. Soc. 1990 331 350
[20] Higher-dimensional shift equivalence and strong shift equivalence are the same over the integers Proc. Amer. Math. Soc. 1990 527 536
[21] Algebraic number theory 1963
[22] Classification of one dimensional attractors 1970 341 361
[23] Classification of subshifts of finite type Ann. of Math. (2) 1973
Cité par Sources :
