Automorphisms of the dimension group and gyration numbers
Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 191-212

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1992_1124983_3,
     author = {Kim, K. H. and Roush, F. W. and Wagoner, J. B.},
     title = {Automorphisms of the dimension group and gyration numbers},
     journal = {Journal of the American Mathematical Society},
     pages = {191--212},
     publisher = {mathdoc},
     volume = {05},
     number = {1},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1124983-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/}
}
TY  - JOUR
AU  - Kim, K. H.
AU  - Roush, F. W.
AU  - Wagoner, J. B.
TI  - Automorphisms of the dimension group and gyration numbers
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 191
EP  - 212
VL  - 05
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/
DO  - 10.1090/S0894-0347-1992-1124983-3
ID  - 10_1090_S0894_0347_1992_1124983_3
ER  - 
%0 Journal Article
%A Kim, K. H.
%A Roush, F. W.
%A Wagoner, J. B.
%T Automorphisms of the dimension group and gyration numbers
%J Journal of the American Mathematical Society
%D 1992
%P 191-212
%V 05
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1124983-3/
%R 10.1090/S0894-0347-1992-1124983-3
%F 10_1090_S0894_0347_1992_1124983_3
Kim, K. H.; Roush, F. W.; Wagoner, J. B. Automorphisms of the dimension group and gyration numbers. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 191-212. doi: 10.1090/S0894-0347-1992-1124983-3

[1] Baker, Kirby A. Strong shift equivalence of 2×2 matrices of nonnegative integers Ergodic Theory Dynam. Systems 1983 501 508

[2] Boyle, Mike, Handelman, David Algebraic shift equivalence and primitive matrices Trans. Amer. Math. Soc. 1993 121 149

[3] Boyle, Mike, Krieger, Wolfgang Periodic points and automorphisms of the shift Trans. Amer. Math. Soc. 1987 125 149

[4] Boyle, Mike, Lind, Douglas, Rudolph, Daniel The automorphism group of a shift of finite type Trans. Amer. Math. Soc. 1988 71 114

[5] Cuntz, Joachim, Krieger, Wolfgang Topological Markov chains with dicyclic dimension groups J. Reine Angew. Math. 1980 44 51

[6] Denker, Manfred, Grillenberger, Christian, Sigmund, Karl Ergodic theory on compact spaces 1976

[7] Effros, Edward G. Dimensions and 𝐶*-algebras 1981

[8] Franks, John M. Homology and dynamical systems 1982

[9] Handelman, David Positive matrices and dimension groups affiliated to 𝐶*-algebras and topological Markov chains J. Operator Theory 1981 55 74

[10] Hedlund, G. A. Endomorphisms and automorphisms of the shift dynamical system Math. Systems Theory 1969 320 375

[11] Krieger, Wolfgang On dimension functions and topological Markov chains Invent. Math. 1980 239 250

[12] Kim, K. H., Roush, F. W. Some results on decidability of shift equivalence J. Combin. Inform. System Sci. 1979 123 146

[13] Kim, K. H., Roush, F. W. Williams’s conjecture is false for reducible subshifts J. Amer. Math. Soc. 1992 213 215

[14] Nasu, Masakazu Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts 1988 564 607

[15] Parry, William, Tuncel, Selim Classification problems in ergodic theory 1982

[16] Parry, William, Williams, R. F. Block coding and a zeta function for finite Markov chains Proc. London Math. Soc. (3) 1977 483 495

[17] Wagoner, J. B. Markov partitions and 𝐾₂ Inst. Hautes Études Sci. Publ. Math. 1987 91 129

[18] Wagoner, J. B. Triangle identities and symmetries of a subshift of finite type Pacific J. Math. 1990 181 205

[19] Wagoner, J. B. Eventual finite order generation for the kernel of the dimension group representation Trans. Amer. Math. Soc. 1990 331 350

[20] Wagoner, J. B. Higher-dimensional shift equivalence and strong shift equivalence are the same over the integers Proc. Amer. Math. Soc. 1990 527 536

[21] Weiss, Edwin Algebraic number theory 1963

[22] Williams, R. F. Classification of one dimensional attractors 1970 341 361

[23] Williams, R. F. Classification of subshifts of finite type Ann. of Math. (2) 1973

Cité par Sources :