Combinatorial stratification of complex arrangements
Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 105-149

Voir la notice de l'article provenant de la source American Mathematical Society

We present a method for discretizing complex hyperplane arrangements by encoding their topology into a finite partially ordered set of “sign vectors.” This is used in the following ways: (1) A general method is given for constructing regular cell complexes having the homotopy type of the complement of the arrangement. (2) For the case of complexified arrangements this specializes to the construction of Salvetti [S]. We study the combinatorial structure of complexified arrangements and the Salvetti complex in some detail. (3) This general method simultaneously produces cell decompositions of the singularity link. This link is shown to have the homotopy type of a wedge of spheres for arrangements in ${\mathbb {C}^d},\;d \geq 4$. (4) The homology of the link and the cohomology of the complement are computed in terms of explicit bases, which are matched by Alexander duality. This gives a new, more elementary, and more generally valid proof for the Brieskorn-Orlik-Solomon theorem and some related results. (5) Our setup leads to a more general notion of “$2$-pseudoarrangements,” which can be thought of as topologically deformed complex arrangements (retaining only the essential topological and combinatorial structure). We show that all of the above remains true in this generality, except for the sign patterns of the Orlik-Solomon relations.
@article{10_1090_S0894_0347_1992_1119198_9,
     author = {Bj\~A{\textparagraph}rner, Anders and Ziegler, G\~A{\textonequarter}nter M.},
     title = {Combinatorial stratification of complex arrangements},
     journal = {Journal of the American Mathematical Society},
     pages = {105--149},
     publisher = {mathdoc},
     volume = {05},
     number = {1},
     year = {1992},
     doi = {10.1090/S0894-0347-1992-1119198-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1119198-9/}
}
TY  - JOUR
AU  - Björner, Anders
AU  - Ziegler, Günter M.
TI  - Combinatorial stratification of complex arrangements
JO  - Journal of the American Mathematical Society
PY  - 1992
SP  - 105
EP  - 149
VL  - 05
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1119198-9/
DO  - 10.1090/S0894-0347-1992-1119198-9
ID  - 10_1090_S0894_0347_1992_1119198_9
ER  - 
%0 Journal Article
%A Björner, Anders
%A Ziegler, Günter M.
%T Combinatorial stratification of complex arrangements
%J Journal of the American Mathematical Society
%D 1992
%P 105-149
%V 05
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1992-1119198-9/
%R 10.1090/S0894-0347-1992-1119198-9
%F 10_1090_S0894_0347_1992_1119198_9
Björner, Anders; Ziegler, Günter M. Combinatorial stratification of complex arrangements. Journal of the American Mathematical Society, Tome 05 (1992) no. 1, pp. 105-149. doi: 10.1090/S0894-0347-1992-1119198-9

[1] Arnol′D, V. I. The cohomology ring of the group of dyed braids Mat. Zametki 1969 227 231

[2] Arvola, William A. Complexified real arrangements of hyperplanes Manuscripta Math. 1991 295 306

[3] Bayer, Margaret, Sturmfels, Bernd Lawrence polytopes Canad. J. Math. 1990 62 79

[4] Bjã¶Rner, Anders On the homology of geometric lattices Algebra Universalis 1982 107 128

[5] Bjã¶Rner, Anders The homology and shellability of matroids and geometric lattices 1992 226 283

[6] Takã¡Cs, Lajos Combinatorics 1984 123 143

[7] Bjã¶Rner, Anders, Ziegler, Gã¼Nter M. Broken circuit complexes: factorizations and generalizations J. Combin. Theory Ser. B 1991 96 126

[8] Brieskorn, Egbert Sur les groupes de tresses [d’après V. I. Arnol′d] 1973

[9] Brylawski, Tom The broken-circuit complex Trans. Amer. Math. Soc. 1977 417 433

[10] Cooke, George E., Finney, Ross L. Homology of cell complexes 1967

[11] Falk, Michael A geometric duality for order complexes and hyperplane complements European J. Combin. 1992 351 355

[12] Folkman, Jon, Lawrence, Jim Oriented matroids J. Combin. Theory Ser. B 1978 199 236

[13] Gel′Fand, I. M., Goresky, R. M., Macpherson, R. D., Serganova, V. V. Combinatorial geometries, convex polyhedra, and Schubert cells Adv. in Math. 1987 301 316

[14] Gel′Fand, I. M., Rybnikov, G. L. Algebraic and topological invariants of oriented matroids Dokl. Akad. Nauk SSSR 1989 791 795

[15] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[16] Jambu, Michel, Leborgne, Daniel Fonction de Möbius et arrangements d’hyperplans C. R. Acad. Sci. Paris Sér. I Math. 1986 311 314

[17] Milnor, John Singular points of complex hypersurfaces 1968

[18] Munkres, James R. Elements of algebraic topology 1984

[19] Orlik, Peter Introduction to arrangements 1989

[20] Orlik, Peter Complements of subspace arrangements J. Algebraic Geom. 1992 147 156

[21] Orlik, Peter, Solomon, Louis Combinatorics and topology of complements of hyperplanes Invent. Math. 1980 167 189

[22] Randell, Richard Lattice-isotopic arrangements are topologically isomorphic Proc. Amer. Math. Soc. 1989 555 559

[23] Salvetti, M. Topology of the complement of real hyperplanes in 𝐶^{𝑁} Invent. Math. 1987 603 618

[24] Spanier, Edwin H. Algebraic topology 1966

[25] Varchenko, A. N. The numbers of faces of a configuration of hyperplanes Dokl. Akad. Nauk SSSR 1988 527 530

Cité par Sources :