Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1991_1102581_4,
author = {\r{A}uczak, Tomasz and Spencer, Joel},
title = {When does the zero-one law hold?},
journal = {Journal of the American Mathematical Society},
pages = {451--468},
publisher = {mathdoc},
volume = {04},
number = {3},
year = {1991},
doi = {10.1090/S0894-0347-1991-1102581-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102581-4/}
}
TY - JOUR AU - Åuczak, Tomasz AU - Spencer, Joel TI - When does the zero-one law hold? JO - Journal of the American Mathematical Society PY - 1991 SP - 451 EP - 468 VL - 04 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102581-4/ DO - 10.1090/S0894-0347-1991-1102581-4 ID - 10_1090_S0894_0347_1991_1102581_4 ER -
%0 Journal Article %A Åuczak, Tomasz %A Spencer, Joel %T When does the zero-one law hold? %J Journal of the American Mathematical Society %D 1991 %P 451-468 %V 04 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1991-1102581-4/ %R 10.1090/S0894-0347-1991-1102581-4 %F 10_1090_S0894_0347_1991_1102581_4
Åuczak, Tomasz; Spencer, Joel. When does the zero-one law hold?. Journal of the American Mathematical Society, Tome 04 (1991) no. 3, pp. 451-468. doi: 10.1090/S0894-0347-1991-1102581-4
[1] Random graphs 1985
[2] , A useful elementary correlation inequality J. Combin. Theory Ser. A 1989 305 307
[3] , Threshold functions Combinatorica 1987 35 38
[4] , On the evolution of random graphs Magyar Tud. Akad. Mat. Kutató Int. Közl. 1960 17 61
[5] Generalized first-order spectra and polynomial-time recognizable sets 1974 43 73
[6] Probabilities on finite models J. Symbolic Logic 1976 50 58
[7] Countable sparse random graphs Random Structures Algorithms 1990 205 214
[8] Threshold functions for extension statements J. Combin. Theory Ser. A 1990 286 305
[9] , Zero-one laws for sparse random graphs J. Amer. Math. Soc. 1988 97 115
Cité par Sources :