Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1989_1002633_4,
     author = {Almgren, Frederick J. and Lieb, Elliott H.},
     title = {Symmetric decreasing rearrangement is sometimes continuous},
     journal = {Journal of the American Mathematical Society},
     pages = {683--773},
     publisher = {mathdoc},
     volume = {02},
     number = {4},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-1002633-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/}
}
                      
                      
                    TY - JOUR AU - Almgren, Frederick J. AU - Lieb, Elliott H. TI - Symmetric decreasing rearrangement is sometimes continuous JO - Journal of the American Mathematical Society PY - 1989 SP - 683 EP - 773 VL - 02 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/ DO - 10.1090/S0894-0347-1989-1002633-4 ID - 10_1090_S0894_0347_1989_1002633_4 ER -
%0 Journal Article %A Almgren, Frederick J. %A Lieb, Elliott H. %T Symmetric decreasing rearrangement is sometimes continuous %J Journal of the American Mathematical Society %D 1989 %P 683-773 %V 02 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/ %R 10.1090/S0894-0347-1989-1002633-4 %F 10_1090_S0894_0347_1989_1002633_4
Almgren, Frederick J.; Lieb, Elliott H. Symmetric decreasing rearrangement is sometimes continuous. Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 683-773. doi: 10.1090/S0894-0347-1989-1002633-4
[1] , Symmetric decreasing rearrangement can be discontinuous Bull. Amer. Math. Soc. (N.S.) 1989 177 180
[2] , Some discontinuous variational problems Differential Integral Equations 1988 341 349
[3] Problèmes isopérimétriques et espaces de Sobolev J. Differential Geometry 1976 573 598
[4] Isoperimetric inequalities and applications 1980
[5] , , Finite-amplitude steady waves in stratified fluids J. Math. Pures Appl. (9) 1983
[6] , A relation between pointwise convergence of functions and convergence of functionals Proc. Amer. Math. Soc. 1983 486 490
[7] , , A general rearrangement inequality for multiple integrals J. Functional Analysis 1974 227 237
[8] , Minimal rearrangements of Sobolev functions J. Reine Angew. Math. 1988 153 179
[9] Rearrangements of functions and convergence in Orlicz spaces Applicable Anal. 1979 23 27
[10] The continuity of the rearrangement in ð^{1,ð}(ð ) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1984 57 85
[11] , , Rearrangements of functions J. Funct. Anal. 1986 432 438
[12] , Some relations between nonexpansive and order preserving mappings Proc. Amer. Math. Soc. 1980 385 390
[13] A general integral inequality for the derivative of an equimeasurable rearrangement Canadian J. Math. 1976 793 804
[14] Geometric measure theory 1969
[15] Multiple integrals in the calculus of variations and nonlinear elliptic systems 1983
[16] Symmetrization of functions in Sobolev spaces and the isoperimetric inequality Manuscripta Math. 1976 215 235
[17] Rearrangements and convexity of level sets in PDE 1985
[18] Existence and uniqueness of the minimizing solution of Choquardâs nonlinear equation Studies in Appl. Math. 1976/77 93 105
[19] Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities Ann. of Math. (2) 1983 349 374
[20] , Isoperimetric Inequalities in Mathematical Physics 1951
[21] , On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions SIAM J. Math. Anal. 1986 761 771
[22] Symmetrisierung für Funktionen mehrerer reeler Variablen Manuscripta Math. 1974 159 170
[23] Zur Symmetrisierung von Funktionen auf Sphären Math. Z. 1973 317 327
[24] On a fundamental theorem of the calculus of variations Acta Math. 1959 1 22
[25] On the definition and properties of certain variational integrals Trans. Amer. Math. Soc. 1961 139 167
[26] Variational methods for free surface interfaces 1987
[27] Best constant in Sobolev inequality Ann. Mat. Pura Appl. (4) 1976 353 372
[28] A function not constant on a connected set of critical points Duke Math. J. 1935 514 517
Cité par Sources :
