Symmetric decreasing rearrangement is sometimes continuous
Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 683-773

Voir la notice de l'article provenant de la source American Mathematical Society

This paper deals with the operation $\mathcal {R}$ of symmetric decreasing rearrangement which maps ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$ to ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$. We show that even though it is norm decreasing, $\mathcal {R}$ is not continuous for $n \geq 2$. The functions at which $\mathcal {R}$ is continuous are precisely characterized by a new property called co-area regularity. Every sufficiently differentiable function is co-area regular, and both the regular and the irregular functions are dense in ${{\mathbf {W}}^{1,p}}({{\mathbf {R}}^n})$. Curiously, $\mathcal {R}$ is always continuous in fractional Sobolev spaces ${{\mathbf {W}}^{\alpha ,p}}({{\mathbf {R}}^n})$ with $0 \alpha 1$.
@article{10_1090_S0894_0347_1989_1002633_4,
     author = {Almgren, Frederick J. and Lieb, Elliott H.},
     title = {Symmetric decreasing rearrangement is sometimes continuous},
     journal = {Journal of the American Mathematical Society},
     pages = {683--773},
     publisher = {mathdoc},
     volume = {02},
     number = {4},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-1002633-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/}
}
TY  - JOUR
AU  - Almgren, Frederick J.
AU  - Lieb, Elliott H.
TI  - Symmetric decreasing rearrangement is sometimes continuous
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 683
EP  - 773
VL  - 02
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/
DO  - 10.1090/S0894-0347-1989-1002633-4
ID  - 10_1090_S0894_0347_1989_1002633_4
ER  - 
%0 Journal Article
%A Almgren, Frederick J.
%A Lieb, Elliott H.
%T Symmetric decreasing rearrangement is sometimes continuous
%J Journal of the American Mathematical Society
%D 1989
%P 683-773
%V 02
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002633-4/
%R 10.1090/S0894-0347-1989-1002633-4
%F 10_1090_S0894_0347_1989_1002633_4
Almgren, Frederick J.; Lieb, Elliott H. Symmetric decreasing rearrangement is sometimes continuous. Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 683-773. doi: 10.1090/S0894-0347-1989-1002633-4

[1] Almgren, Frederick J., Jr., Lieb, Elliott H. Symmetric decreasing rearrangement can be discontinuous Bull. Amer. Math. Soc. (N.S.) 1989 177 180

[2] Ambrosetti, A., Turner, R. E. L. Some discontinuous variational problems Differential Integral Equations 1988 341 349

[3] Aubin, Thierry Problèmes isopérimétriques et espaces de Sobolev J. Differential Geometry 1976 573 598

[4] Bandle, Catherine Isoperimetric inequalities and applications 1980

[5] Bona, J. L., Bose, D. K., Turner, R. E. L. Finite-amplitude steady waves in stratified fluids J. Math. Pures Appl. (9) 1983

[6] Brã©Zis, Haã¯M, Lieb, Elliott A relation between pointwise convergence of functions and convergence of functionals Proc. Amer. Math. Soc. 1983 486 490

[7] Brascamp, H. J., Lieb, Elliott H., Luttinger, J. M. A general rearrangement inequality for multiple integrals J. Functional Analysis 1974 227 237

[8] Brothers, John E., Ziemer, William P. Minimal rearrangements of Sobolev functions J. Reine Angew. Math. 1988 153 179

[9] Chiti, Giuseppe Rearrangements of functions and convergence in Orlicz spaces Applicable Anal. 1979 23 27

[10] Coron, J.-M. The continuity of the rearrangement in 𝑊^{1,𝑝}(𝑅) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1984 57 85

[11] Crowe, J. A., Zweibel, J. A., Rosenbloom, P. C. Rearrangements of functions J. Funct. Anal. 1986 432 438

[12] Crandall, Michael G., Tartar, Luc Some relations between nonexpansive and order preserving mappings Proc. Amer. Math. Soc. 1980 385 390

[13] Duff, G. F. D. A general integral inequality for the derivative of an equimeasurable rearrangement Canadian J. Math. 1976 793 804

[14] Federer, Herbert Geometric measure theory 1969

[15] Giaquinta, Mariano Multiple integrals in the calculus of variations and nonlinear elliptic systems 1983

[16] Hildã©N, Keijo Symmetrization of functions in Sobolev spaces and the isoperimetric inequality Manuscripta Math. 1976 215 235

[17] Kawohl, Bernhard Rearrangements and convexity of level sets in PDE 1985

[18] Lieb, Elliott H. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation Studies in Appl. Math. 1976/77 93 105

[19] Lieb, Elliott H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities Ann. of Math. (2) 1983 349 374

[20] Pã³Lya, G., Szegã¶, G. Isoperimetric Inequalities in Mathematical Physics 1951

[21] Ruf, Bernhard, Solimini, Sergio On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions SIAM J. Math. Anal. 1986 761 771

[22] Sperner, Emanuel, Jr. Symmetrisierung für Funktionen mehrerer reeler Variablen Manuscripta Math. 1974 159 170

[23] Sperner, Emanuel, Jr. Zur Symmetrisierung von Funktionen auf Sphären Math. Z. 1973 317 327

[24] Serrin, James On a fundamental theorem of the calculus of variations Acta Math. 1959 1 22

[25] Serrin, James On the definition and properties of certain variational integrals Trans. Amer. Math. Soc. 1961 139 167

[26] Variational methods for free surface interfaces 1987

[27] Talenti, Giorgio Best constant in Sobolev inequality Ann. Mat. Pura Appl. (4) 1976 353 372

[28] Whitney, Hassler A function not constant on a connected set of critical points Duke Math. J. 1935 514 517

Cité par Sources :