The asymptotic behavior of properly embedded minimal surfaces of finite topology
Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 667-682

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_1002088_X,
     author = {Hoffman, David and Meeks, William H.},
     title = {The asymptotic behavior of properly embedded minimal surfaces of finite topology},
     journal = {Journal of the American Mathematical Society},
     pages = {667--682},
     publisher = {mathdoc},
     volume = {02},
     number = {4},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-1002088-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/}
}
TY  - JOUR
AU  - Hoffman, David
AU  - Meeks, William H.
TI  - The asymptotic behavior of properly embedded minimal surfaces of finite topology
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 667
EP  - 682
VL  - 02
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/
DO  - 10.1090/S0894-0347-1989-1002088-X
ID  - 10_1090_S0894_0347_1989_1002088_X
ER  - 
%0 Journal Article
%A Hoffman, David
%A Meeks, William H.
%T The asymptotic behavior of properly embedded minimal surfaces of finite topology
%J Journal of the American Mathematical Society
%D 1989
%P 667-682
%V 02
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/
%R 10.1090/S0894-0347-1989-1002088-X
%F 10_1090_S0894_0347_1989_1002088_X
Hoffman, David; Meeks, William H. The asymptotic behavior of properly embedded minimal surfaces of finite topology. Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 667-682. doi: 10.1090/S0894-0347-1989-1002088-X

[1] Anderson, Michael T. Curvature estimates for minimal surfaces in 3-manifolds Ann. Sci. École Norm. Sup. (4) 1985 89 105

[2] Barbosa, J. L., Do Carmo, M. On the size of a stable minimal surface in 𝑅³ Amer. J. Math. 1976 515 528

[3] Callahan, Michael, Hoffman, David, Meeks, William H., Iii The structure of singly-periodic minimal surfaces Invent. Math. 1990 455 481

[4] Costa, Celso J. Example of a complete minimal immersion in 𝑅³ of genus one and three embedded ends Bol. Soc. Brasil. Mat. 1984 47 54

[5] Fang, Yi, Meeks, William H., Iii Some global properties of complete minimal surfaces of finite topology in 𝑅³ Topology 1991 9 20

[6] Fischer-Colbrie, D. On complete minimal surfaces with finite Morse index in three-manifolds Invent. Math. 1985 121 132

[7] Ros, Antonio Properly embedded minimal surfaces with finite topology 2006 907 926

[8] Hoffman, D., Meeks, W. H., Iii A variational approach to the existence of complete embedded minimal surfaces Duke Math. J. 1988 877 893

[9] Hoffman, David A., Meeks, William, Iii A complete embedded minimal surface in 𝑅³ with genus one and three ends J. Differential Geom. 1985 109 127

[10] Hoffman, David, Meeks, William H., Iii Properties of properly embedded minimal surfaces of finite topology Bull. Amer. Math. Soc. (N.S.) 1987 296 300

[11] Jorge, Luquã©Sio P., Meeks, William H., Iii The topology of complete minimal surfaces of finite total Gaussian curvature Topology 1983 203 221

[12] Kuo, Tzee Char On 𝐶⁰-sufficiency of jets of potential functions Topology 1969 167 171

[13] Meeks, William H., Iii, Rosenberg, Harold The global theory of doubly periodic minimal surfaces Invent. Math. 1989 351 379

[14] Meeks, William H., Iii, Yau, Shing Tung The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehn’s lemma Topology 1982 409 442

[15] Meeks, William W., Iii, Yau, Shing Tung The existence of embedded minimal surfaces and the problem of uniqueness Math. Z. 1982 151 168

[16] Osserman, Robert A survey of minimal surfaces 1986

[17] Schoen, Richard M. Uniqueness, symmetry, and embeddedness of minimal surfaces J. Differential Geom. 1983

[18] Simon, Leon Lectures on geometric measure theory 1983

[19] Smale, S. An infinite dimensional version of Sard’s theorem Amer. J. Math. 1965 861 866

[20] White, Brian New applications of mapping degrees to minimal surface theory J. Differential Geom. 1989 143 162

Cité par Sources :