Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1989_1002088_X,
     author = {Hoffman, David and Meeks, William H.},
     title = {The asymptotic behavior of properly embedded minimal surfaces of finite topology},
     journal = {Journal of the American Mathematical Society},
     pages = {667--682},
     publisher = {mathdoc},
     volume = {02},
     number = {4},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-1002088-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/}
}
                      
                      
                    TY - JOUR AU - Hoffman, David AU - Meeks, William H. TI - The asymptotic behavior of properly embedded minimal surfaces of finite topology JO - Journal of the American Mathematical Society PY - 1989 SP - 667 EP - 682 VL - 02 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/ DO - 10.1090/S0894-0347-1989-1002088-X ID - 10_1090_S0894_0347_1989_1002088_X ER -
%0 Journal Article %A Hoffman, David %A Meeks, William H. %T The asymptotic behavior of properly embedded minimal surfaces of finite topology %J Journal of the American Mathematical Society %D 1989 %P 667-682 %V 02 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1002088-X/ %R 10.1090/S0894-0347-1989-1002088-X %F 10_1090_S0894_0347_1989_1002088_X
Hoffman, David; Meeks, William H. The asymptotic behavior of properly embedded minimal surfaces of finite topology. Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 667-682. doi: 10.1090/S0894-0347-1989-1002088-X
[1] Curvature estimates for minimal surfaces in 3-manifolds Ann. Sci. Ãcole Norm. Sup. (4) 1985 89 105
[2] , On the size of a stable minimal surface in ð ³ Amer. J. Math. 1976 515 528
[3] , , The structure of singly-periodic minimal surfaces Invent. Math. 1990 455 481
[4] Example of a complete minimal immersion in ð ³ of genus one and three embedded ends Bol. Soc. Brasil. Mat. 1984 47 54
[5] , Some global properties of complete minimal surfaces of finite topology in ð ³ Topology 1991 9 20
[6] On complete minimal surfaces with finite Morse index in three-manifolds Invent. Math. 1985 121 132
[7] Properly embedded minimal surfaces with finite topology 2006 907 926
[8] , A variational approach to the existence of complete embedded minimal surfaces Duke Math. J. 1988 877 893
[9] , A complete embedded minimal surface in ð ³ with genus one and three ends J. Differential Geom. 1985 109 127
[10] , Properties of properly embedded minimal surfaces of finite topology Bull. Amer. Math. Soc. (N.S.) 1987 296 300
[11] , The topology of complete minimal surfaces of finite total Gaussian curvature Topology 1983 203 221
[12] On ð¶â°-sufficiency of jets of potential functions Topology 1969 167 171
[13] , The global theory of doubly periodic minimal surfaces Invent. Math. 1989 351 379
[14] , The classical Plateau problem and the topology of three-dimensional manifolds. The embedding of the solution given by Douglas-Morrey and an analytic proof of Dehnâs lemma Topology 1982 409 442
[15] , The existence of embedded minimal surfaces and the problem of uniqueness Math. Z. 1982 151 168
[16] A survey of minimal surfaces 1986
[17] Uniqueness, symmetry, and embeddedness of minimal surfaces J. Differential Geom. 1983
[18] Lectures on geometric measure theory 1983
[19] An infinite dimensional version of Sardâs theorem Amer. J. Math. 1965 861 866
[20] New applications of mapping degrees to minimal surface theory J. Differential Geom. 1989 143 162
Cité par Sources :
