Trace rings of generic matrices are Cohen-Macaulay
Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 775-799

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we prove that trace rings of generic matrics are Cohen-Macaulay (Theorem 7.3.6). This is done by relating this problem to a conjecture of Stanley about modules of invariants under a reductive group. We prove a slightly weakened version (Conjecture 3.4’) of this conjecture in special cases (Theorem 6.1.8). In particular, we obtain that Conjecture 3.4’ is true for $S{L_2}$ (Remark 6.1.10).
@article{10_1090_S0894_0347_1989_1001850_7,
     author = {Van den Bergh, Michel},
     title = {Trace rings of generic matrices are {Cohen-Macaulay}},
     journal = {Journal of the American Mathematical Society},
     pages = {775--799},
     publisher = {mathdoc},
     volume = {02},
     number = {4},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-1001850-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1001850-7/}
}
TY  - JOUR
AU  - Van den Bergh, Michel
TI  - Trace rings of generic matrices are Cohen-Macaulay
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 775
EP  - 799
VL  - 02
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1001850-7/
DO  - 10.1090/S0894-0347-1989-1001850-7
ID  - 10_1090_S0894_0347_1989_1001850_7
ER  - 
%0 Journal Article
%A Van den Bergh, Michel
%T Trace rings of generic matrices are Cohen-Macaulay
%J Journal of the American Mathematical Society
%D 1989
%P 775-799
%V 02
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-1001850-7/
%R 10.1090/S0894-0347-1989-1001850-7
%F 10_1090_S0894_0347_1989_1001850_7
Van den Bergh, Michel. Trace rings of generic matrices are Cohen-Macaulay. Journal of the American Mathematical Society, Tome 02 (1989) no. 4, pp. 775-799. doi: 10.1090/S0894-0347-1989-1001850-7

[1] Artin, M. On Azumaya algebras and finite dimensional representations of rings J. Algebra 1969 532 563

[2] Artin, M., Schelter, W. Integral ring homomorphisms Adv. in Math. 1981 289 329

[3] Bott, Raoul Homogeneous vector bundles Ann. of Math. (2) 1957 203 248

[4] Formanek, Edward Functional equations for character series associated with 𝑛×𝑛 matrices Trans. Amer. Math. Soc. 1986 647 663

[5] Formanek, Edward, Halpin, Patrick, Li, Wen Ch’Ing Winnie The Poincaré series of the ring of 2×2 generic matrices J. Algebra 1981 105 112

[6] Hartshorne, Robin Residues and duality 1966

[7] Hesselink, Wim H. Desingularizations of varieties of nullforms Invent. Math. 1979 141 163

[8] Hochster, Melvin, Roberts, Joel L. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay Advances in Math. 1974 115 175

[9] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry 1984

[10] Le Bruyn, Lieven Trace rings of generic 2 by 2 matrices Mem. Amer. Math. Soc. 1987

[11] Le Bruyn, Lieven, Procesi, Claudio Étale local structure of matrix invariants and concomitants 1987 143 175

[12] Kempf, George R. On the collapsing of homogeneous bundles Invent. Math. 1976 229 239

[13] Mumford, David, Fogarty, John Geometric invariant theory 1982

[14] Popov, V. L. Criteria for the stability of the action of a semisimple group on the factorial of a manifold Izv. Akad. Nauk SSSR Ser. Mat. 1970 523 531

[15] Procesi, C. The invariant theory of 𝑛×𝑛 matrices Advances in Math. 1976 306 381

[16] Procesi, Claudio Trace identities and standard diagrams 1979 191 218

[17] Small, L. W., Stafford, J. T. Homological properties of generic matrix rings Israel J. Math. 1985 27 32

[18] Stanley, Richard P. Combinatorics and invariant theory 1979 345 355

[19] Teranishi, Yasuo The Hilbert series of rings of matrix concomitants Nagoya Math. J. 1988 143 156

Cité par Sources :