The least action principle and the related concept of generalized flows for incompressible perfect fluids
Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 225-255

Voir la notice de l'article provenant de la source American Mathematical Society

The link between the Euler equations of perfect incompressible flows and the Least Action Principle has been known for a long time [1]. Solutions can be considered as geodesic curves along the manifold of volume preserving mappings. Here the “shortest path problem” is investigated. Given two different volume preserving mappings at two different times, find, for the intermediate times, an incompressible flow map that minimizes the kinetic energy (or, more generally, the Action). In its classical formulation, this problem has been solved [7] only when the two different mappings are sufficiently close in some very strong sense. In this paper, a new framework is introduced, where generalized flows are defined, in the spirit of L. C. Young, as probability measures on the set of all possible trajectories in the physical space. Then the minimization problem is generalized as the “continuous linear programming” problem that is much easier to handle. The existence problem is completely solved in the case of the $d$-dimensional torus. It is also shown that under natural restrictions a classical solution to the Euler equations is the unique optimal flow in the generalized framework. Finally, a link is established with the concept of measure-valued solutions to the Euler equations [6], and an example is provided where the unique generalized solution can be explicitly computed and turns out to be genuinely probabilistic.
@article{10_1090_S0894_0347_1989_0969419_8,
     author = {Brenier, Yann},
     title = {The least action principle and the related concept of generalized flows for incompressible perfect fluids},
     journal = {Journal of the American Mathematical Society},
     pages = {225--255},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0969419-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0969419-8/}
}
TY  - JOUR
AU  - Brenier, Yann
TI  - The least action principle and the related concept of generalized flows for incompressible perfect fluids
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 225
EP  - 255
VL  - 02
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0969419-8/
DO  - 10.1090/S0894-0347-1989-0969419-8
ID  - 10_1090_S0894_0347_1989_0969419_8
ER  - 
%0 Journal Article
%A Brenier, Yann
%T The least action principle and the related concept of generalized flows for incompressible perfect fluids
%J Journal of the American Mathematical Society
%D 1989
%P 225-255
%V 02
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0969419-8/
%R 10.1090/S0894-0347-1989-0969419-8
%F 10_1090_S0894_0347_1989_0969419_8
Brenier, Yann. The least action principle and the related concept of generalized flows for incompressible perfect fluids. Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 225-255. doi: 10.1090/S0894-0347-1989-0969419-8

[1] Arnold, V. Les méthodes mathématiques de la mécanique classique 1976 470

[2] Arnold, V. I., Avez, A. Problèmes ergodiques de la mécanique classique 1967

[3] Bourbaki, N. Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces 𝐿^{𝑝} 1965 283

[4] Brenier, Yann Décomposition polaire et réarrangement monotone des champs de vecteurs C. R. Acad. Sci. Paris Sér. I Math. 1987 805 808

[5] Diperna, Ronald J. Measure-valued solutions to conservation laws Arch. Rational Mech. Anal. 1985 223 270

[6] Diperna, Ronald J., Majda, Andrew J. Oscillations and concentrations in weak solutions of the incompressible fluid equations Comm. Math. Phys. 1987 667 689

[7] Ebin, David G., Marsden, Jerrold Groups of diffeomorphisms and the motion of an incompressible fluid Ann. of Math. (2) 1970 102 163

[8] Ekeland, Ivar, Temam, Roger Analyse convexe et problèmes variationnels 1974

[9] Rachev, S. T. The Monge-Kantorovich problem on mass transfer and its applications in stochastics Teor. Veroyatnost. i Primenen. 1984 625 653

[10] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I 1980

[11] Tartar, Luc The compensated compactness method applied to systems of conservation laws 1983 263 285

[12] Young, L. C. Lectures on the calculus of variations and optimal control theory 1969

Cité par Sources :