Inertial manifolds for reaction diffusion equations in higher space dimensions
Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 805-866

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we show that the scalar reaction diffusion equation \[ {u_t} = \nu \Delta u + f(x,u),\qquad u \in R\] with $x \in {\Omega _n} \subset {R^n}\quad (n = 2,3)$ and with Dirichlet, Neumann, or periodic boundary conditions, has an inertial manifold when (1) the equation is dissipative, and (2) $f$ is of class ${C^3}$ and for ${\Omega _3} = {(0,2\pi )^3}$ or ${\Omega _2} = (0,2\pi /{a_1}) \times (0,2\pi /{a_2})$, where ${a_1}$ and ${a_2}$ are positive. The proof is based on an (abstract) Invariant Manifold Theorem for flows on a Hilbert space. It is significant that on ${\Omega _3}$ the spectrum of the Laplacian $\Delta$ does not have arbitrary large gaps, as required in other theories of inertial manifolds. Our proof is based on a crucial property of the Schroedinger operator $\Delta + \upsilon (x)$, which is valid only in space dimension $n \leq 3$. This property says that $\Delta + \upsilon (x)$ can be well approximated by the constant coefficient problem $\Delta + \bar \upsilon$ over large segments of the Hilbert space ${L^2}(\Omega )$, where $\bar \upsilon = {({\text {vol}}\Omega )^{ - 1}}\int _\Omega {\upsilon \;dx}$ is the average value of $\upsilon$. We call this property the Principle of Spatial Averaging. The proof that the Schroedinger operator satisfies the Principle of Spatial Averaging on the regions ${\Omega _2}$ and ${\Omega _3}$ described above follows from a gap theorem for finite families of quadratic forms, which we present in an Appendix to this paper.
@article{10_1090_S0894_0347_1988_0943276_7,
     author = {Mallet-Paret, John and Sell, George R.},
     title = {Inertial manifolds for reaction diffusion equations in higher space dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {805--866},
     publisher = {mathdoc},
     volume = {01},
     number = {4},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0943276-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/}
}
TY  - JOUR
AU  - Mallet-Paret, John
AU  - Sell, George R.
TI  - Inertial manifolds for reaction diffusion equations in higher space dimensions
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 805
EP  - 866
VL  - 01
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/
DO  - 10.1090/S0894-0347-1988-0943276-7
ID  - 10_1090_S0894_0347_1988_0943276_7
ER  - 
%0 Journal Article
%A Mallet-Paret, John
%A Sell, George R.
%T Inertial manifolds for reaction diffusion equations in higher space dimensions
%J Journal of the American Mathematical Society
%D 1988
%P 805-866
%V 01
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/
%R 10.1090/S0894-0347-1988-0943276-7
%F 10_1090_S0894_0347_1988_0943276_7
Mallet-Paret, John; Sell, George R. Inertial manifolds for reaction diffusion equations in higher space dimensions. Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 805-866. doi: 10.1090/S0894-0347-1988-0943276-7

[1] Adams, Robert A. Sobolev spaces 1975

[2] Billotti, J. E., Lasalle, J. P. Dissipative periodic processes Bull. Amer. Math. Soc. 1971 1082 1088

[3] Constantin, P., Foias, C. Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations Comm. Pure Appl. Math. 1985 1 27

[4] Constantin, Peter, Foias, Ciprian, Nicolaenko, Basil, Temam, Roger Nouveaux résultats sur les variétés inertielles pour les équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1986 375 378

[5] Constantin, P., Foias, C., Nicolaenko, B., Temam, R. Spectral barriers and inertial manifolds for dissipative partial differential equations J. Dynam. Differential Equations 1989 45 73

[6] Constantin, P., Foias, C., Temam, R. Attractors representing turbulent flows Mem. Amer. Math. Soc. 1985

[7] Edmunds, D. E., Evans, W. D. Spectral theory and differential operators 1987

[8] Fenichel, Neil Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J. 1971/72 193 226

[9] Foias, C., Manley, O., Temam, R. Attractors for the Bénard problem: existence and physical bounds on their fractal dimension Nonlinear Anal. 1987 939 967

[10] Foias, Ciprian, Sell, George R., Temam, Roger Variétés inertielles des équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1985 139 141

[11] Foias, Ciprian, Sell, George R., Temam, Roger Variétés inertielles des équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1985 139 141

[12] Foias, Ciprian, Sell, George R., Temam, Roger Inertial manifolds for nonlinear evolutionary equations J. Differential Equations 1988 309 353

[13] FoiaåŸ, C., Temam, R. Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations J. Math. Pures Appl. (9) 1979 339 368

[14] Hale, Jack K. Asymptotic behavior of dissipative systems 1988

[15] Hale, Jack K., Magalhã£Es, Luis T., Oliva, Waldyr M. An introduction to infinite-dimensional dynamical systems—geometric theory 1984

[16] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 1979

[17] Hartman, Philip Ordinary differential equations 1964

[18] Henry, Daniel Geometric theory of semilinear parabolic equations 1981

[19] Hewitt, Edwin, Stromberg, Karl Real and abstract analysis 1975

[20] Hirsch, M. W., Pugh, C. C., Shub, M. Invariant manifolds 1977

[21] Mallet-Paret, John Negatively invariant sets of compact maps and an extension of a theorem of Cartwright J. Differential Equations 1976 331 348

[22] Maã±Ã©, Ricardo Reduction of semilinear parabolic equations to finite dimensional 𝐶¹ flows 1977 361 378

[23] Maã±Ã©, Ricardo On the dimension of the compact invariant sets of certain nonlinear maps 1981 230 242

[24] Mora, Xavier Finite-dimensional attracting manifolds in reaction-diffusion equations 1983 353 360

[25] Mora, Xavier, Solã -Morales, Joan Diffusion equations as singular limits of damped wave equations 1989 499 506

[26] Nicolaenko, B., Scheurer, B., Temam, R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors Phys. D 1985 155 183

[27] Pazy, A. Semigroups of linear operators and applications to partial differential equations 1983

[28] Pliss, V. A. A reduction principle in the theory of stability of motion Izv. Akad. Nauk SSSR Ser. Mat. 1964 1297 1324

[29] Richards, Ian On the gaps between numbers which are sums of two squares Adv. in Math. 1982 1 2

[30] Sacker, Robert J. A perturbation theorem for invariant manifolds and Hölder continuity J. Math. Mech. 1969 705 762

[31] Sacker, Robert J., Sell, George R. The spectrum of an invariant submanifold J. Differential Equations 1980 135 160

[32] Temam, Roger Infinite-dimensional dynamical systems in mechanics and physics 1988

[33] Watson, G. L. Integral quadratic forms 1960

Cité par Sources :