Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1988_0943276_7,
     author = {Mallet-Paret, John and Sell, George R.},
     title = {Inertial manifolds for reaction diffusion equations in higher space dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {805--866},
     publisher = {mathdoc},
     volume = {01},
     number = {4},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0943276-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/}
}
                      
                      
                    TY - JOUR AU - Mallet-Paret, John AU - Sell, George R. TI - Inertial manifolds for reaction diffusion equations in higher space dimensions JO - Journal of the American Mathematical Society PY - 1988 SP - 805 EP - 866 VL - 01 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/ DO - 10.1090/S0894-0347-1988-0943276-7 ID - 10_1090_S0894_0347_1988_0943276_7 ER -
%0 Journal Article %A Mallet-Paret, John %A Sell, George R. %T Inertial manifolds for reaction diffusion equations in higher space dimensions %J Journal of the American Mathematical Society %D 1988 %P 805-866 %V 01 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0943276-7/ %R 10.1090/S0894-0347-1988-0943276-7 %F 10_1090_S0894_0347_1988_0943276_7
Mallet-Paret, John; Sell, George R. Inertial manifolds for reaction diffusion equations in higher space dimensions. Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 805-866. doi: 10.1090/S0894-0347-1988-0943276-7
[1] Sobolev spaces 1975
[2] , Dissipative periodic processes Bull. Amer. Math. Soc. 1971 1082 1088
[3] , Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations Comm. Pure Appl. Math. 1985 1 27
[4] , , , Nouveaux résultats sur les variétés inertielles pour les équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1986 375 378
[5] , , , Spectral barriers and inertial manifolds for dissipative partial differential equations J. Dynam. Differential Equations 1989 45 73
[6] , , Attractors representing turbulent flows Mem. Amer. Math. Soc. 1985
[7] , Spectral theory and differential operators 1987
[8] Persistence and smoothness of invariant manifolds for flows Indiana Univ. Math. J. 1971/72 193 226
[9] , , Attractors for the Bénard problem: existence and physical bounds on their fractal dimension Nonlinear Anal. 1987 939 967
[10] , , Variétés inertielles des équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1985 139 141
[11] , , Variétés inertielles des équations différentielles dissipatives C. R. Acad. Sci. Paris Sér. I Math. 1985 139 141
[12] , , Inertial manifolds for nonlinear evolutionary equations J. Differential Equations 1988 309 353
[13] , Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations J. Math. Pures Appl. (9) 1979 339 368
[14] Asymptotic behavior of dissipative systems 1988
[15] , , An introduction to infinite-dimensional dynamical systemsâgeometric theory 1984
[16] , An introduction to the theory of numbers 1979
[17] Ordinary differential equations 1964
[18] Geometric theory of semilinear parabolic equations 1981
[19] , Real and abstract analysis 1975
[20] , , Invariant manifolds 1977
[21] Negatively invariant sets of compact maps and an extension of a theorem of Cartwright J. Differential Equations 1976 331 348
[22] Reduction of semilinear parabolic equations to finite dimensional ð¶Â¹ flows 1977 361 378
[23] On the dimension of the compact invariant sets of certain nonlinear maps 1981 230 242
[24] Finite-dimensional attracting manifolds in reaction-diffusion equations 1983 353 360
[25] , Diffusion equations as singular limits of damped wave equations 1989 499 506
[26] , , Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors Phys. D 1985 155 183
[27] Semigroups of linear operators and applications to partial differential equations 1983
[28] A reduction principle in the theory of stability of motion Izv. Akad. Nauk SSSR Ser. Mat. 1964 1297 1324
[29] On the gaps between numbers which are sums of two squares Adv. in Math. 1982 1 2
[30] A perturbation theorem for invariant manifolds and Hölder continuity J. Math. Mech. 1969 705 762
[31] , The spectrum of an invariant submanifold J. Differential Equations 1980 135 160
[32] Infinite-dimensional dynamical systems in mechanics and physics 1988
[33] Integral quadratic forms 1960
Cité par Sources :
