Essential 𝑝-dimension of 𝐏𝐆𝐋(𝐩²)
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 693-712

Voir la notice de l'article provenant de la source American Mathematical Society

Let $p$ be a prime integer and $F$ a field of characteristic different from $p$. We prove that the essential $p$-dimension of the group $\operatorname {\mathbf {PGL}}_F(p^2)$ is equal to $p^2+1$. This integer measures the complexity of the class of central simple algebras of degree $p^2$ over field extensions of $F$.
DOI : 10.1090/S0894-0347-10-00661-2

Merkurjev, Alexander 1

1 Department of Mathematics, University of California, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_10_00661_2,
     author = {Merkurjev, Alexander},
     title = {Essential {\dh}‘-dimension of {{\dh}{\dh}†{\dh}‹({\dh}{\textcopyright}\^A{\texttwosuperior})}},
     journal = {Journal of the American Mathematical Society},
     pages = {693--712},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00661-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00661-2/}
}
TY  - JOUR
AU  - Merkurjev, Alexander
TI  - Essential 𝑝-dimension of 𝐏𝐆𝐋(𝐩²)
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 693
EP  - 712
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00661-2/
DO  - 10.1090/S0894-0347-10-00661-2
ID  - 10_1090_S0894_0347_10_00661_2
ER  - 
%0 Journal Article
%A Merkurjev, Alexander
%T Essential 𝑝-dimension of 𝐏𝐆𝐋(𝐩²)
%J Journal of the American Mathematical Society
%D 2010
%P 693-712
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00661-2/
%R 10.1090/S0894-0347-10-00661-2
%F 10_1090_S0894_0347_10_00661_2
Merkurjev, Alexander. Essential 𝑝-dimension of 𝐏𝐆𝐋(𝐩²). Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 693-712. doi: 10.1090/S0894-0347-10-00661-2

[1] Berhuy, Grã©Gory, Favi, Giordano Essential dimension: a functorial point of view (after A. Merkurjev) Doc. Math. 2003 279 330

[2] Cartan, Henri, Eilenberg, Samuel Homological algebra 1999

[3] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques La 𝑅-équivalence sur les tores Ann. Sci. École Norm. Sup. (4) 1977 175 229

[4] Fulton, William Intersection theory 1984

[5] Garibaldi, Skip, Merkurjev, Alexander, Serre, Jean-Pierre Cohomological invariants in Galois cohomology 2003

[6] Jacob, Bill, Wadsworth, Adrian Division algebras over Henselian fields J. Algebra 1990 126 179

[7] Karpenko, Nikita A., Merkurjev, Alexander S. Essential dimension of finite 𝑝-groups Invent. Math. 2008 491 508

[8] Knus, Max-Albert, Merkurjev, Alexander, Rost, Markus, Tignol, Jean-Pierre The book of involutions 1998

[9] Lorenz, M., Reichstein, Z., Rowen, L. H., Saltman, D. J. Fields of definition for division algebras J. London Math. Soc. (2) 2003 651 670

[10] Merkurjev, Alexander 𝑅-equivalence on three-dimensional tori and zero-cycles Algebra Number Theory 2008 69 89

[11] Merkurjev, Alexander S. Essential dimension 2009 299 325

[12] Reichstein, Zinovy, Youssin, Boris Essential dimensions of algebraic groups and a resolution theorem for 𝐺-varieties Canad. J. Math. 2000 1018 1056

[13] Rowen, Louis H., Saltman, David J. Prime-to-𝑝 extensions of division algebras Israel J. Math. 1992 197 207

[14] Tignol, Jean-Pierre Sur les classes de similitude de corps à involution de degré 8 C. R. Acad. Sci. Paris Sér. A-B 1978

[15] Voskresenskiä­, V. E. Algebraic groups and their birational invariants 1998

Cité par Sources :