Stable commutator length is rational in free groups
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 941-961

Voir la notice de l'article provenant de la source American Mathematical Society

For any group, there is a natural (pseudo-)norm on the vector space $B_1^H$ of real homogenized (group) $1$-boundaries, called the stable commutator length norm. This norm is closely related to, and can be thought of as a relative version of, the Gromov (pseudo)-norm on (ordinary) homology. We show that for a free group, the unit ball of this pseudo-norm is a rational polyhedron. It follows that the stable commutator length in free groups takes on only rational values. Moreover every element of the commutator subgroup of a free group rationally bounds an injective map of a surface group. The proof of these facts yields an algorithm to compute the stable commutator length in free groups. Using this algorithm, we answer a well-known question of Bavard in the negative, constructing explicit examples of elements in free groups whose stable commutator length is not a half-integer.
DOI : 10.1090/S0894-0347-09-00634-1

Calegari, Danny 1

1 Department of Mathematics, Caltech, Pasadena, California 91125
@article{10_1090_S0894_0347_09_00634_1,
     author = {Calegari, Danny},
     title = {Stable commutator length is rational in free groups},
     journal = {Journal of the American Mathematical Society},
     pages = {941--961},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00634-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00634-1/}
}
TY  - JOUR
AU  - Calegari, Danny
TI  - Stable commutator length is rational in free groups
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 941
EP  - 961
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00634-1/
DO  - 10.1090/S0894-0347-09-00634-1
ID  - 10_1090_S0894_0347_09_00634_1
ER  - 
%0 Journal Article
%A Calegari, Danny
%T Stable commutator length is rational in free groups
%J Journal of the American Mathematical Society
%D 2009
%P 941-961
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00634-1/
%R 10.1090/S0894-0347-09-00634-1
%F 10_1090_S0894_0347_09_00634_1
Calegari, Danny. Stable commutator length is rational in free groups. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 941-961. doi: 10.1090/S0894-0347-09-00634-1

[1] Bavard, Christophe Longueur stable des commutateurs Enseign. Math. (2) 1991 109 150

[2] Bouarich, Abdessalam Suites exactes en cohomologie bornée réelle des groupes discrets C. R. Acad. Sci. Paris Sér. I Math. 1995 1355 1359

[3] Brooks, Robert Some remarks on bounded cohomology 1981 53 63

[4] Calegari, Danny Foliations and the geometry of 3-manifolds 2007

[5] Calegari, Danny Surface subgroups from homology Geom. Topol. 2008 1995 2007

[6] Dantzig, George B. Linear programming and extensions 1963

[7] Gabai, David Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503

[8] Gromov, Michael Volume and bounded cohomology Inst. Hautes Études Sci. Publ. Math. 1982

[9] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[10] Hempel, John 3-Manifolds 1976

[11] Mosher, Lee, Oertel, Ulrich Two-dimensional measured laminations of positive Euler characteristic Q. J. Math. 2001 195 216

[12] Penner, R. C., Harer, J. L. Combinatorics of train tracks 1992

[13] Oertel, Ulrich Homology branched surfaces: Thurston’s norm on 𝐻₂(𝑀³) 1986 253 272

[14] Rannard, Richard Computing immersed normal surfaces in the figure-eight knot complement Experiment. Math. 1999 73 84

[15] Scott, Peter Subgroups of surface groups are almost geometric J. London Math. Soc. (2) 1978 555 565

[16] Serre, Jean-Pierre Trees 2003

[17] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[18] Zhuang, Dongping Irrational stable commutator length in finitely presented groups J. Mod. Dyn. 2008 499 507

Cité par Sources :