Voir la notice de l'article provenant de la source American Mathematical Society
Andersen, Kasper 1 ; Grodal, Jesper 2
@article{10_1090_S0894_0347_08_00623_1,
     author = {Andersen, Kasper and Grodal, Jesper},
     title = {The classification of 2-compact groups},
     journal = {Journal of the American Mathematical Society},
     pages = {387--436},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00623-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/}
}
                      
                      
                    TY - JOUR AU - Andersen, Kasper AU - Grodal, Jesper TI - The classification of 2-compact groups JO - Journal of the American Mathematical Society PY - 2009 SP - 387 EP - 436 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/ DO - 10.1090/S0894-0347-08-00623-1 ID - 10_1090_S0894_0347_08_00623_1 ER -
%0 Journal Article %A Andersen, Kasper %A Grodal, Jesper %T The classification of 2-compact groups %J Journal of the American Mathematical Society %D 2009 %P 387-436 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/ %R 10.1090/S0894-0347-08-00623-1 %F 10_1090_S0894_0347_08_00623_1
Andersen, Kasper; Grodal, Jesper. The classification of 2-compact groups. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 387-436. doi: 10.1090/S0894-0347-08-00623-1
[1] Lectures on Lie groups 1969
[2] , Finite ð»-spaces and algebras over the Steenrod algebra Ann. of Math. (2) 1980 95 143
[3] The normalizer splitting conjecture for ð-compact groups Fund. Math. 1999 1 16
[4] , Automorphisms of ð-compact groups and their root data Geom. Topol. 2008 1427 1460
[5] , , , The classification of ð-compact groups for ð odd Ann. of Math. (2) 2008 95 210
[6] Ãléments de mathématique: groupes et algèbres de Lie 1982 138
[7] , Homotopy limits, completions and localizations 1972
[8] , Projective unitary groups are totally ð-determined ð-compact groups Math. Proc. Cambridge Philos. Soc. 2004 75 88
[9] , , Homology decompositions for ð-compact groups Adv. Math. 2007 491 534
[10] , The realization of polynomial algebras as cohomology rings Pacific J. Math. 1974 425 434
[11] , Methods of representation theory. Vol. I 1981
[12] Sur les groupes de Lie compacts non connexes Comment. Math. Helv. 1956 41 89
[13] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970
[14] , , Automorphisms of fibrations Proc. Amer. Math. Soc. 1980 491 494
[15] Strong convergence of the Eilenberg-Moore spectral sequence Topology 1974 255 265
[16] The centralizer decomposition of ðµðº 1996 167 184
[17] Lie groups and ð-compact groups Doc. Math. 1998 433 442
[18] , , Towers of fibrations and homotopical wreath products J. Pure Appl. Algebra 1989 9 28
[19] , , The homotopic uniqueness of ðµð³ 1987 90 105
[20] , , Homotopical uniqueness of classifying spaces Topology 1992 29 45
[21] , Homotopy fixed points for cyclic ð-group actions Proc. Amer. Math. Soc. 1997 3735 3739
[22] , A new finite loop space at the prime two J. Amer. Math. Soc. 1993 37 64
[23] , Homotopy fixed-point methods for Lie groups and finite loop spaces Ann. of Math. (2) 1994 395 442
[24] , The center of a ð-compact group 1995 119 157
[25] , Product splittings for ð-compact groups Fund. Math. 1995 279 300
[26] , Normalizers of tori Geom. Topol. 2005 1337 1380
[27] Elementary abelian ð-subgroups of algebraic groups Geom. Dedicata 1991 253 305
[28] , , The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects Amer. J. Math. 1993 1053 1106
[29] , , Homotopy classification of self-maps of ðµðº via ðº-actions. I Ann. of Math. (2) 1992 183 226
[30] , , Self-homotopy equivalences of classifying spaces of compact connected Lie groups Fund. Math. 1995 99 126
[31] , Vector bundles over classifying spaces of compact Lie groups Acta Math. 1996 109 143
[32] Implications in Morava ð¾-theory Mem. Amer. Math. Soc. 1986
[33] On cohomology ððð2 of the classifying spaces of non-simply connected classical Lie groups J. Math. Soc. Japan 1975 281 288
[34] Sur les espaces fonctionnels dont la source est le classifiant dâun ð-groupe abélien élémentaire Inst. Hautes Ãtudes Sci. Publ. Math. 1992 135 244
[35] Torsion in ð»-spaces. I Ann. of Math. (2) 1976 457 487
[36] Torsion in ð»-spaces. II Ann. of Math. (2) 1978 41 88
[37] Two torsion and the loop space conjecture Ann. of Math. (2) 1982 35 91
[38] Rational isomorphisms of ð-compact groups Topology 1996 201 225
[39] Normalizers of maximal tori Math. Z. 1999 51 74
[40] ð-determined 2-compact groups. I Fund. Math. 2007 11 84
[41] ð-determined 2-compact groups. II Fund. Math. 2007 1 90
[42] , Centers and finite coverings of finite loop spaces J. Reine Angew. Math. 1994 99 133
[43] , Connected finite loop spaces with maximal tori Trans. Amer. Math. Soc. 1998 3483 3504
[44] Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups Trans. Amer. Math. Soc. 2006 4689 4720
[45] Maps between classifying spaces Math. Z. 1991 153 168
[46] Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group Topology 1994 271 330
[47] Spaces with polynomial mod-ð cohomology Math. Proc. Cambridge Philos. Soc. 1999 277 292
[48] A uniqueness result for orthogonal groups as 2-compact groups Arch. Math. (Basel) 2002 110 119
[49] On the 2-compact group ð·ð¼(4) J. Reine Angew. Math. 2003 163 185
[50] The spectrum of an equivariant cohomology ring. I, II Ann. of Math. (2) 1971
[51] , Finite unitary reflection groups Canad. J. Math. 1954 274 304
[52] The cohomology algebra of a space Enseign. Math. (2) 1961
[53] Polynomial algebras over the algebra of cohomology operations 1971 85 99
[54] Endomorphisms of linear algebraic groups 1968 108
[55] Torsion in reductive groups Advances in Math. 1975 63 92
[56] The isomorphism and isogeny theorems for reductive algebraic groups J. Algebra 1999 366 383
[57] Normalisateurs de tores. I. Groupes de Coxeter étendus J. Algebra 1966 96 116
[58] , On the homotopy type of the classifying space of the exceptional Lie group ð¹â Manuscripta Math. 2002 521 540
[59] , Symplectic groups are ð-determined 2-compact groups Fund. Math. 2006 121 139
[60] Homotopy uniqueness of ðµðºâ Manuscripta Math. 1998 471 497
[61] Rational maximal tori J. Pure Appl. Algebra 1974 261 272
[62] On maps from âð\varinjlimð¹ to ð 1987 227 236
Cité par Sources :