The classification of 2-compact groups
Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 387-436

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that any connected $2$–compact group is classified by its $2$–adic root datum, and in particular the exotic $2$–compact group $\operatorname {DI}(4)$, constructed by Dwyer–Wilkerson, is the only simple $2$–compact group not arising as the $2$–completion of a compact connected Lie group. Combined with our earlier work with Møller and Viruel for $p$ odd, this establishes the full classification of $p$–compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected $p$–compact groups and root data over the $p$–adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen–Grodal–Møller–Viruel methods by incorporating the theory of root data over the $p$–adic integers, as developed by Dwyer–Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski–McClure–Oliver in the early 1990s.
DOI : 10.1090/S0894-0347-08-00623-1

Andersen, Kasper 1 ; Grodal, Jesper 2

1 Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, Bygning 1530, DK-8000 Aarhus, Denmark
2 Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
@article{10_1090_S0894_0347_08_00623_1,
     author = {Andersen, Kasper and Grodal, Jesper},
     title = {The classification of 2-compact groups},
     journal = {Journal of the American Mathematical Society},
     pages = {387--436},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00623-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/}
}
TY  - JOUR
AU  - Andersen, Kasper
AU  - Grodal, Jesper
TI  - The classification of 2-compact groups
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 387
EP  - 436
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/
DO  - 10.1090/S0894-0347-08-00623-1
ID  - 10_1090_S0894_0347_08_00623_1
ER  - 
%0 Journal Article
%A Andersen, Kasper
%A Grodal, Jesper
%T The classification of 2-compact groups
%J Journal of the American Mathematical Society
%D 2009
%P 387-436
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00623-1/
%R 10.1090/S0894-0347-08-00623-1
%F 10_1090_S0894_0347_08_00623_1
Andersen, Kasper; Grodal, Jesper. The classification of 2-compact groups. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 387-436. doi: 10.1090/S0894-0347-08-00623-1

[1] Adams, J. Frank Lectures on Lie groups 1969

[2] Adams, J. F., Wilkerson, C. W. Finite 𝐻-spaces and algebras over the Steenrod algebra Ann. of Math. (2) 1980 95 143

[3] Andersen, Kasper K. S. The normalizer splitting conjecture for 𝑝-compact groups Fund. Math. 1999 1 16

[4] Andersen, Kasper K. S., Grodal, Jesper Automorphisms of 𝑝-compact groups and their root data Geom. Topol. 2008 1427 1460

[5] Andersen, K. K. S., Grodal, J., Mã¸Ller, J. M., Viruel, A. The classification of 𝑝-compact groups for 𝑝 odd Ann. of Math. (2) 2008 95 210

[6] Bourbaki, Nicolas Éléments de mathématique: groupes et algèbres de Lie 1982 138

[7] Bousfield, A. K., Kan, D. M. Homotopy limits, completions and localizations 1972

[8] Broto, Carles, Viruel, Antonio Projective unitary groups are totally 𝑁-determined 𝑝-compact groups Math. Proc. Cambridge Philos. Soc. 2004 75 88

[9] Castellana, Natã Lia, Levi, Ran, Notbohm, Dietrich Homology decompositions for 𝑝-compact groups Adv. Math. 2007 491 534

[10] Clark, Allan, Ewing, John The realization of polynomial algebras as cohomology rings Pacific J. Math. 1974 425 434

[11] Curtis, Charles W., Reiner, Irving Methods of representation theory. Vol. I 1981

[12] De Siebenthal, Jean Sur les groupes de Lie compacts non connexes Comment. Math. Helv. 1956 41 89

[13] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970

[14] Dror, E., Dwyer, W. G., Kan, D. M. Automorphisms of fibrations Proc. Amer. Math. Soc. 1980 491 494

[15] Dwyer, W. G. Strong convergence of the Eilenberg-Moore spectral sequence Topology 1974 255 265

[16] Dwyer, W. G. The centralizer decomposition of 𝐵𝐺 1996 167 184

[17] Dwyer, W. G. Lie groups and 𝑝-compact groups Doc. Math. 1998 433 442

[18] Dwyer, W. G., Kan, D. M., Smith, J. H. Towers of fibrations and homotopical wreath products J. Pure Appl. Algebra 1989 9 28

[19] Dwyer, William G., Miller, Haynes R., Wilkerson, Clarence W. The homotopic uniqueness of 𝐵𝑆³ 1987 90 105

[20] Dwyer, W. G., Miller, H. R., Wilkerson, C. W. Homotopical uniqueness of classifying spaces Topology 1992 29 45

[21] Dwyer, W. G., Mã¸Ller, J. M. Homotopy fixed points for cyclic 𝑝-group actions Proc. Amer. Math. Soc. 1997 3735 3739

[22] Dwyer, W. G., Wilkerson, C. W. A new finite loop space at the prime two J. Amer. Math. Soc. 1993 37 64

[23] Dwyer, W. G., Wilkerson, C. W. Homotopy fixed-point methods for Lie groups and finite loop spaces Ann. of Math. (2) 1994 395 442

[24] Dwyer, W. G., Wilkerson, C. W. The center of a 𝑝-compact group 1995 119 157

[25] Dwyer, W. G., Wilkerson, C. W. Product splittings for 𝑝-compact groups Fund. Math. 1995 279 300

[26] Dwyer, W. G., Wilkerson, C. W. Normalizers of tori Geom. Topol. 2005 1337 1380

[27] Griess, Robert L., Jr. Elementary abelian 𝑝-subgroups of algebraic groups Geom. Dedicata 1991 253 305

[28] Henn, Hans-Werner, Lannes, Jean, Schwartz, Lionel The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects Amer. J. Math. 1993 1053 1106

[29] Jackowski, Stefan, Mcclure, James, Oliver, Bob Homotopy classification of self-maps of 𝐵𝐺 via 𝐺-actions. I Ann. of Math. (2) 1992 183 226

[30] Jackowski, Stefan, Mcclure, James, Oliver, Bob Self-homotopy equivalences of classifying spaces of compact connected Lie groups Fund. Math. 1995 99 126

[31] Jackowski, Stefan, Oliver, Bob Vector bundles over classifying spaces of compact Lie groups Acta Math. 1996 109 143

[32] Kane, Richard M. Implications in Morava 𝐾-theory Mem. Amer. Math. Soc. 1986

[33] Kono, Akira On cohomology 𝑚𝑜𝑑2 of the classifying spaces of non-simply connected classical Lie groups J. Math. Soc. Japan 1975 281 288

[34] Lannes, Jean Sur les espaces fonctionnels dont la source est le classifiant d’un 𝑝-groupe abélien élémentaire Inst. Hautes Études Sci. Publ. Math. 1992 135 244

[35] Lin, James P. Torsion in 𝐻-spaces. I Ann. of Math. (2) 1976 457 487

[36] Lin, James P. Torsion in 𝐻-spaces. II Ann. of Math. (2) 1978 41 88

[37] Lin, James P. Two torsion and the loop space conjecture Ann. of Math. (2) 1982 35 91

[38] Mã¸Ller, Jesper Michael Rational isomorphisms of 𝑝-compact groups Topology 1996 201 225

[39] Mã¸Ller, Jesper M. Normalizers of maximal tori Math. Z. 1999 51 74

[40] Mã¸Ller, Jesper M. 𝑁-determined 2-compact groups. I Fund. Math. 2007 11 84

[41] Mã¸Ller, Jesper M. 𝑁-determined 2-compact groups. II Fund. Math. 2007 1 90

[42] Mã¸Ller, J. M., Notbohm, D. Centers and finite coverings of finite loop spaces J. Reine Angew. Math. 1994 99 133

[43] Mã¸Ller, J. M., Notbohm, D. Connected finite loop spaces with maximal tori Trans. Amer. Math. Soc. 1998 3483 3504

[44] Neusel, Mara D. Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups Trans. Amer. Math. Soc. 2006 4689 4720

[45] Notbohm, Dietrich Maps between classifying spaces Math. Z. 1991 153 168

[46] Notbohm, Dietrich Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group Topology 1994 271 330

[47] Notbohm, D. Spaces with polynomial mod-𝑝 cohomology Math. Proc. Cambridge Philos. Soc. 1999 277 292

[48] Notbohm, D. A uniqueness result for orthogonal groups as 2-compact groups Arch. Math. (Basel) 2002 110 119

[49] Notbohm, Dietrich On the 2-compact group 𝐷𝐼(4) J. Reine Angew. Math. 2003 163 185

[50] Quillen, Daniel The spectrum of an equivariant cohomology ring. I, II Ann. of Math. (2) 1971

[51] Shephard, G. C., Todd, J. A. Finite unitary reflection groups Canad. J. Math. 1954 274 304

[52] Steenrod, N. E. The cohomology algebra of a space Enseign. Math. (2) 1961

[53] Steenrod, Norman Polynomial algebras over the algebra of cohomology operations 1971 85 99

[54] Steinberg, Robert Endomorphisms of linear algebraic groups 1968 108

[55] Steinberg, Robert Torsion in reductive groups Advances in Math. 1975 63 92

[56] Steinberg, Robert The isomorphism and isogeny theorems for reductive algebraic groups J. Algebra 1999 366 383

[57] Tits, J. Normalisateurs de tores. I. Groupes de Coxeter étendus J. Algebra 1966 96 116

[58] Vavpetiä, Aleå¡, Viruel, Antonio On the homotopy type of the classifying space of the exceptional Lie group 𝐹₄ Manuscripta Math. 2002 521 540

[59] Vavpetiä, Aleå¡, Viruel, Antonio Symplectic groups are 𝑁-determined 2-compact groups Fund. Math. 2006 121 139

[60] Viruel, Antonio Homotopy uniqueness of 𝐵𝐺₂ Manuscripta Math. 1998 471 497

[61] Wilkerson, Clarence Rational maximal tori J. Pure Appl. Algebra 1974 261 272

[62] Wojtkowiak, Zdziså‚Aw On maps from ℎ𝑜\varinjlim𝐹 to 𝑍 1987 227 236

Cité par Sources :