Voir la notice de l'article provenant de la source American Mathematical Society
Peres, Yuval 1 ; Schramm, Oded 2 ; Sheffield, Scott 1, 3 ; Wilson, David 2
@article{10_1090_S0894_0347_08_00606_1,
author = {Peres, Yuval and Schramm, Oded and Sheffield, Scott and Wilson, David},
title = {Tug-of-war and the infinity {Laplacian}},
journal = {Journal of the American Mathematical Society},
pages = {167--210},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2009},
doi = {10.1090/S0894-0347-08-00606-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00606-1/}
}
TY - JOUR AU - Peres, Yuval AU - Schramm, Oded AU - Sheffield, Scott AU - Wilson, David TI - Tug-of-war and the infinity Laplacian JO - Journal of the American Mathematical Society PY - 2009 SP - 167 EP - 210 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00606-1/ DO - 10.1090/S0894-0347-08-00606-1 ID - 10_1090_S0894_0347_08_00606_1 ER -
%0 Journal Article %A Peres, Yuval %A Schramm, Oded %A Sheffield, Scott %A Wilson, David %T Tug-of-war and the infinity Laplacian %J Journal of the American Mathematical Society %D 2009 %P 167-210 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00606-1/ %R 10.1090/S0894-0347-08-00606-1 %F 10_1090_S0894_0347_08_00606_1
Peres, Yuval; Schramm, Oded; Sheffield, Scott; Wilson, David. Tug-of-war and the infinity Laplacian. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 167-210. doi: 10.1090/S0894-0347-08-00606-1
[1] Extension of functions satisfying Lipschitz conditions Ark. Mat. 1967
[2] On the partial differential equation ð¢â²ð¢ââ+2ð¢âð¢_{ð¦}ð¢_{ð¥ð¦}+ð¢_{ð¦}²ð¢_{ð¦ð¦} Ark. Mat. 1968
[3] Construction of singular solutions to the ð-harmonic equation and its limit equation for ð Manuscripta Math. 1986 135 158
[4] , , A tour of the theory of absolutely minimizing functions Bull. Amer. Math. Soc. (N.S.) 2004 439 505
[5] , , , , Viscosity solutions and applications 1997
[6] , Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term Comm. Partial Differential Equations 2001 2323 2337
[7] , , Limits as ðââ of Î_{ð}ð¢_{ð} Rend. Sem. Mat. Univ. Politec. Torino 1989
[8] , Principles of comparison with distance functions for absolute minimizers J. Convex Anal. 2007 515 541
[9] , , Optimal Lipschitz extensions and the infinity Laplacian Calc. Var. Partial Differential Equations 2001 123 139
[10] , A remark on infinity harmonic functions 2001 123 129
[11] , Viscosity solutions of Hamilton-Jacobi equations Trans. Amer. Math. Soc. 1983 1 42
[12] , Various properties of solutions of the infinity-Laplacian equation Comm. Partial Differential Equations 2005 1401 1428
[13] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient Arch. Rational Mech. Anal. 1993 51 74
[14] Absolutely minimizing Lipschitz extensions on a metric space Ann. Acad. Sci. Fenn. Math. 2002 57 67
[15] , , , , Combinatorial games under auction play Games Econom. Behav. 1999 229 264
[16] , , , Richman games 1996 439 449
[17] The determinacy of Blackwell games J. Symbolic Logic 1998 1565 1581
[18] Extension of range of functions Bull. Amer. Math. Soc. 1934 837 842
[19] Absolutely minimal extensions of functions on metric spaces Mat. Sb. 1999 83 110
[20] Stochastic games and applications 2003
[21] A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions Math. Comp. 2005 1217 1230
[22] , , , Random-turn hex and other selection games Amer. Math. Monthly 2007 373 387
[23] ð¶Â¹ regularity for infinity harmonic functions in two dimensions Arch. Ration. Mech. Anal. 2005 351 361
[24] Analytic extensions of differentiable functions defined in closed sets Trans. Amer. Math. Soc. 1934 63 89
Cité par Sources :