Voir la notice de l'article provenant de la source American Mathematical Society
Donoho, David 1 ; Tanner, Jared 2
@article{10_1090_S0894_0347_08_00600_0,
author = {Donoho, David and Tanner, Jared},
title = {Counting faces of randomly projected polytopes when the projection radically lowers dimension},
journal = {Journal of the American Mathematical Society},
pages = {1--53},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2009},
doi = {10.1090/S0894-0347-08-00600-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00600-0/}
}
TY - JOUR AU - Donoho, David AU - Tanner, Jared TI - Counting faces of randomly projected polytopes when the projection radically lowers dimension JO - Journal of the American Mathematical Society PY - 2009 SP - 1 EP - 53 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00600-0/ DO - 10.1090/S0894-0347-08-00600-0 ID - 10_1090_S0894_0347_08_00600_0 ER -
%0 Journal Article %A Donoho, David %A Tanner, Jared %T Counting faces of randomly projected polytopes when the projection radically lowers dimension %J Journal of the American Mathematical Society %D 2009 %P 1-53 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00600-0/ %R 10.1090/S0894-0347-08-00600-0 %F 10_1090_S0894_0347_08_00600_0
Donoho, David; Tanner, Jared. Counting faces of randomly projected polytopes when the projection radically lowers dimension. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 1-53. doi: 10.1090/S0894-0347-08-00600-0
[1] , Random projections of regular simplices Discrete Comput. Geom. 1992 219 226
[2] , Asymptotic expansions of integrals 1986
[3] , Random projections of regular polytopes Arch. Math. (Basel) 1999 465 473
[4] , , Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inform. Theory 2006 489 509
[5] , Decoding by linear programming IEEE Trans. Inform. Theory 2005 4203 4215
[6] , Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 2006 5406 5425
[7] Introduction to approximation theory 1998
[8] Compressed sensing IEEE Trans. Inform. Theory 2006 1289 1306
[9] For most large underdetermined systems of equations, the minimal ðâ-norm near-solution approximates the sparsest near-solution Comm. Pure Appl. Math. 2006 907 934
[10] High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension Discrete Comput. Geom. 2006 617 652
[11] , Neighborliness of randomly projected simplices in high dimensions Proc. Natl. Acad. Sci. USA 2005 9452 9457
[12] , Sparse nonnegative solution of underdetermined linear equations by linear programming Proc. Natl. Acad. Sci. USA 2005 9446 9451
[13] , , On the inherent intractability of certain coding problems IEEE Trans. Inform. Theory 1978 384 386
[14] Neighboring vertices on a convex polyhedron 1956 255 263
[15] Neighborly and cyclic polytopes 1963 225 232
[16] Convex polytopes 2003
[17] , , Geometric representation of high dimension, low sample size data J. R. Stat. Soc. Ser. B Stat. Methodol. 2005 427 444
[18] High dimensional probability. III 2003
[19] Limit theorems for the convex hull of random points in higher dimensions Trans. Amer. Math. Soc. 1999 4337 4363
[20] , How neighborly can a centrally symmetric polytope be? Discrete Comput. Geom. 2006 273 281
[21] Lectures on discrete geometry 2002
[22] , Diagrams for centrally symmetric polytopes Mathematika 1968 123 138
[23] On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics Acta Math. 1960 1 23
[24] , Geometric approach to error-correcting codes and reconstruction of signals Int. Math. Res. Not. 2005 4019 4041
[25] Neighbourliness of centrally symmetric polytopes in high dimensions Mathematika 1975 176 181
[26] , Asymptotic behavior of the number of faces of random polyhedra and the neighborliness problem Selecta Math. Soviet. 1992 181 201
Cité par Sources :