Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_08_00598_5,
author = {Scanlon, Thomas},
title = {Infinite finitely generated fields are biinterpretable with \^a},
journal = {Journal of the American Mathematical Society},
pages = {893--908},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2008},
doi = {10.1090/S0894-0347-08-00598-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00598-5/}
}
TY - JOUR AU - Scanlon, Thomas TI - Infinite finitely generated fields are biinterpretable with â JO - Journal of the American Mathematical Society PY - 2008 SP - 893 EP - 908 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00598-5/ DO - 10.1090/S0894-0347-08-00598-5 ID - 10_1090_S0894_0347_08_00598_5 ER -
%0 Journal Article %A Scanlon, Thomas %T Infinite finitely generated fields are biinterpretable with â %J Journal of the American Mathematical Society %D 2008 %P 893-908 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00598-5/ %R 10.1090/S0894-0347-08-00598-5 %F 10_1090_S0894_0347_08_00598_5
Scanlon, Thomas. Infinite finitely generated fields are biinterpretable with â. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 893-908. doi: 10.1090/S0894-0347-08-00598-5
[1] Ideal membership in polynomial rings over the integers J. Amer. Math. Soc. 2004 407 441
[2] , Brauer groups of discrete valuation rings Indag. Math. 1968 286 296
[3] Sur la théorie élémentaire des corps de fonctions J. Symbolic Logic 1986 948 956
[4] Ãquivalence élémentaire et isomorphisme des corps de courbe sur un corps algébriquement clos J. Symbolic Logic 1992 808 823
[5] Simple algebras over a field of algebraic functions of one variable Trudy Mat. Inst. Steklov. 1951 321 344
[6] , Field arithmetic 2005
[7] , Central simple algebras and Galois cohomology 2006
[8] Model theory 1993
[9] Models of Peano arithmetic 1991
[10] Bi-interprétabilité et structures QFA: étude de groupes résolubles et des anneaux commutatifs C. R. Math. Acad. Sci. Paris 2007 59 61
[11] A first course in noncommutative rings 1991
[12] Desyataya problema Gilâ²berta 1993 224
[13] Describing groups Bull. Symbolic Logic 2007 305 339
[14] Uniform first-order definitions in finitely generated fields Duke Math. J. 2007 1 22
[15] Elementary equivalence versus isomorphism Invent. Math. 2002 385 408
[16] The undecidability of algebraic rings and fields Proc. Amer. Math. Soc. 1959 950 957
[17] Undecidable rings Trans. Amer. Math. Soc. 1951 137 159
[18] Undecidability and definability for the theory of global fields Trans. Amer. Math. Soc. 1980 195 217
[19] Local fields 1979
Cité par Sources :