Disk enumeration on the quintic 3-fold
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1169-1209

Voir la notice de l'article provenant de la source American Mathematical Society

Holomorphic disk invariants with boundary in the real Lagrangian of a quintic 3-fold are calculated by localization and proven mirror transforms. A careful discussion of the underlying virtual intersection theory is included. The generating function for the disk invariants is shown to satisfy an extension of the Picard-Fuchs differential equations associated to the mirror quintic. The Ooguri-Vafa multiple cover formula is used to define virtually enumerative disk invariants. The results may also be viewed as providing a virtual enumeration of real rational curves on the quintic.
DOI : 10.1090/S0894-0347-08-00597-3

Pandharipande, R. 1 ; Solomon, J. 2, 1 ; Walcher, J. 3

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
3 School of Natural Science, Institute for Advanced Study, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_08_00597_3,
     author = {Pandharipande, R. and Solomon, J. and Walcher, J.},
     title = {Disk enumeration on the quintic 3-fold},
     journal = {Journal of the American Mathematical Society},
     pages = {1169--1209},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00597-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00597-3/}
}
TY  - JOUR
AU  - Pandharipande, R.
AU  - Solomon, J.
AU  - Walcher, J.
TI  - Disk enumeration on the quintic 3-fold
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1169
EP  - 1209
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00597-3/
DO  - 10.1090/S0894-0347-08-00597-3
ID  - 10_1090_S0894_0347_08_00597_3
ER  - 
%0 Journal Article
%A Pandharipande, R.
%A Solomon, J.
%A Walcher, J.
%T Disk enumeration on the quintic 3-fold
%J Journal of the American Mathematical Society
%D 2008
%P 1169-1209
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00597-3/
%R 10.1090/S0894-0347-08-00597-3
%F 10_1090_S0894_0347_08_00597_3
Pandharipande, R.; Solomon, J.; Walcher, J. Disk enumeration on the quintic 3-fold. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1169-1209. doi: 10.1090/S0894-0347-08-00597-3

[1] Aspinwall, Paul S., Morrison, David R. Topological field theory and rational curves Comm. Math. Phys. 1993 245 262

[2] Fukaya, Kenji, Ono, Kaoru Arnold conjecture and Gromov-Witten invariant Topology 1999 933 1048

[3] Givental, Alexander B. Equivariant Gromov-Witten invariants Internat. Math. Res. Notices 1996 613 663

[4] Hofer, H., Wysocki, K., Zehnder, E. A general Fredholm theory. I. A splicing-based differential geometry J. Eur. Math. Soc. (JEMS) 2007 841 876

[5] Katz, Sheldon, Liu, Chiu-Chu Melissa Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc Adv. Theor. Math. Phys. 2001 1 49

[6] Kontsevich, Maxim Enumeration of rational curves via torus actions 1995 335 368

[7] Kontsevich, Maxim Homological algebra of mirror symmetry 1995 120 139

[8] Lian, Bong H., Liu, Kefeng, Yau, Shing-Tung Mirror principle. I Asian J. Math. 1997 729 763

[9] Ooguri, Hirosi, Vafa, Cumrun Knot invariants and topological strings Nuclear Phys. B 2000 419 438

[10] Pandharipande, Rahul Rational curves on hypersurfaces (after A. Givental) Astérisque 1998

[11] Ruan, Yongbin, Tian, Gang A mathematical theory of quantum cohomology J. Differential Geom. 1995 259 367

[12] Welschinger, Jean-Yves Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry Invent. Math. 2005 195 234

[13] Welschinger, Jean-Yves Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants Duke Math. J. 2005 89 121

[14] Witten, E. Chern-Simons gauge theory as a string theory 1995 637 678

Cité par Sources :