Eulerian series as modular forms
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1085-1104

Voir la notice de l'article provenant de la source American Mathematical Society

In 1988, Hickerson proved the celebrated “mock theta conjectures” in a collection of ten identities from Ramanujan’s “lost notebook” which express certain modular forms as linear combinations of mock theta functions. In the context of Maass forms, these identities arise from the peculiar phenomenon that two different harmonic Maass forms may have the same non-holomorphic parts. Using this perspective, we construct several infinite families of modular forms which are differences of mock theta functions.
DOI : 10.1090/S0894-0347-07-00587-5

Bringmann, Kathrin 1 ; Ono, Ken 2 ; Rhoades, Robert 2

1 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
2 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
@article{10_1090_S0894_0347_07_00587_5,
     author = {Bringmann, Kathrin and Ono, Ken and Rhoades, Robert},
     title = {Eulerian series as modular forms},
     journal = {Journal of the American Mathematical Society},
     pages = {1085--1104},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00587-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00587-5/}
}
TY  - JOUR
AU  - Bringmann, Kathrin
AU  - Ono, Ken
AU  - Rhoades, Robert
TI  - Eulerian series as modular forms
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1085
EP  - 1104
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00587-5/
DO  - 10.1090/S0894-0347-07-00587-5
ID  - 10_1090_S0894_0347_07_00587_5
ER  - 
%0 Journal Article
%A Bringmann, Kathrin
%A Ono, Ken
%A Rhoades, Robert
%T Eulerian series as modular forms
%J Journal of the American Mathematical Society
%D 2008
%P 1085-1104
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00587-5/
%R 10.1090/S0894-0347-07-00587-5
%F 10_1090_S0894_0347_07_00587_5
Bringmann, Kathrin; Ono, Ken; Rhoades, Robert. Eulerian series as modular forms. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1085-1104. doi: 10.1090/S0894-0347-07-00587-5

[1] Andrews, George E. 𝑞-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra 1986

[2] Andrews, George E. Mock theta functions 1989 283 298

[3] Andrews, George E., Garvan, F. G. Ramanujan’s “lost” notebook. VI. The mock theta conjectures Adv. in Math. 1989 242 255

[4] Atkin, A. O. L., Swinnerton-Dyer, P. Some properties of partitions Proc. London Math. Soc. (3) 1954 84 106

[5] Berkovich, Alexander, Garvan, Frank G. Some observations on Dyson’s new symmetries of partitions J. Combin. Theory Ser. A 2002 61 93

[6] Bringmann, Kathrin, Ono, Ken The 𝑓(𝑞) mock theta function conjecture and partition ranks Invent. Math. 2006 243 266

[7] Choi, Youn-Seo Tenth order mock theta functions in Ramanujan’s lost notebook Invent. Math. 1999 497 569

[8] Choi, Youn-Seo Tenth order mock theta functions in Ramanujan’s lost notebook. II Adv. Math. 2000 180 285

[9] Gasper, George, Rahman, Mizan Basic hypergeometric series 1990

[10] Hickerson, Dean A proof of the mock theta conjectures Invent. Math. 1988 639 660

[11] Hickerson, Dean A proof of the mock theta conjectures Invent. Math. 1988 639 660

[12] Kac, Victor G. Infinite-dimensional Lie algebras 1990

[13] Koblitz, Neal Introduction to elliptic curves and modular forms 1993

[14] Lepowsky, James, Wilson, Robert Lee A new family of algebras underlying the Rogers-Ramanujan identities and generalizations Proc. Nat. Acad. Sci. U.S.A. 1981 7254 7258

[15] Lovejoy, Jeremy Rank and conjugation for the Frobenius representation of an overpartition Ann. Comb. 2005 321 334

[16] Shimura, Goro On modular forms of half integral weight Ann. of Math. (2) 1973 440 481

[17] Yesilyurt, Hamza Four identities related to third order mock theta functions in Ramanujan’s lost notebook Adv. Math. 2005 278 299

Cité par Sources :