Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1019-1063

Voir la notice de l'article provenant de la source American Mathematical Society

The three dimensional gravitational Vlasov-Poisson system $\partial _tf+v\cdot \nabla _x f-E_f\cdot \nabla _vf=0$, where $E_f(x)=\nabla _x \phi _f(x)$, $\Delta _x\phi _f=\rho _f(x)$, $\rho _f(x)=\int _{\mathbb {R}^N} f(x,v)dv$, describes the mechanical state of a stellar system subject to its own gravity. Smooth initial data yield unique global in time solutions from a celebrated result by Pfaffelmoser. There exists a hierarchy of physical models which aim at taking into account further relativistic effects. The simplest one is the three dimensional relativistic gravitational Vlasov-Poisson system $\partial _tf+\frac {v}{\sqrt {1+|v|^2}}\cdot \nabla _x f-E_f\cdot \nabla _vf=0$ which we study here. A striking feature as observed by Glassey and Schaeffer is that this system now admits finite blow up solutions. Nevertheless, the existence argument is purely obstructive and provides no insight into the description of the singularity formation. We exhibit in this paper a family of finite time blow up self-similar solutions and prove that their blow up dynamic is stable with respect to radially symmetric perturbations. Our analysis applies to the four dimensional gravitational Vlasov-Poisson system as well.
DOI : 10.1090/S0894-0347-07-00579-6

Lemou, Mohammed 1 ; Méhats, Florian 2 ; Raphaël, Pierre 3

1 CNRS and Université Paul Sabatier, MIP, 118, Route de Narbonne, 31062 Toulouse, France
2 IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
3 CNRS and Université Paris-Sud, Orsay, France
@article{10_1090_S0894_0347_07_00579_6,
     author = {Lemou, Mohammed and M\~A{\textcopyright}hats, Florian and Rapha\~A{\guillemotleft}l, Pierre},
     title = {Stable self-similar blow up dynamics for the three dimensional relativistic gravitational {Vlasov-Poisson} system},
     journal = {Journal of the American Mathematical Society},
     pages = {1019--1063},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00579-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/}
}
TY  - JOUR
AU  - Lemou, Mohammed
AU  - Méhats, Florian
AU  - Raphaël, Pierre
TI  - Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1019
EP  - 1063
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/
DO  - 10.1090/S0894-0347-07-00579-6
ID  - 10_1090_S0894_0347_07_00579_6
ER  - 
%0 Journal Article
%A Lemou, Mohammed
%A Méhats, Florian
%A Raphaël, Pierre
%T Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system
%J Journal of the American Mathematical Society
%D 2008
%P 1019-1063
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/
%R 10.1090/S0894-0347-07-00579-6
%F 10_1090_S0894_0347_07_00579_6
Lemou, Mohammed; Méhats, Florian; Raphaël, Pierre. Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1019-1063. doi: 10.1090/S0894-0347-07-00579-6

[1] Batt, Jã¼Rgen Global symmetric solutions of the initial value problem of stellar dynamics J. Differential Equations 1977 342 364

[2] Batt, J., Faltenbacher, W., Horst, E. Stationary spherically symmetric models in stellar dynamics Arch. Rational Mech. Anal. 1986 159 183

[3] Bouchut, Franã§Ois, Golse, Franã§Ois, Pulvirenti, Mario Kinetic equations and asymptotic theory 2000

[4] Bourgain, Jean, Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997

[5] Choquet-Bruhat, Yvonne, Noutchegueme, Norbert Solutions globales du système de Yang-Mills-Vlasov (masse nulle) C. R. Acad. Sci. Paris Sér. I Math. 1990 785 788

[6] Cã´Te, Raphaã«L Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior J. Funct. Anal. 2006 143 211

[7] Dafermos, Mihalis A note on the collapse of small data self-gravitating massless collisionless matter J. Hyperbolic Differ. Equ. 2006 589 598

[8] Dafermos, Mihalis, Rendall, Alan D. An extension principle for the Einstein-Vlasov system in spherical symmetry Ann. Henri Poincaré 2005 1137 1155

[9] Degond, P. Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity Math. Methods Appl. Sci. 1986 533 558

[10] Diperna, R. J., Lions, P.-L. Global weak solutions of Vlasov-Maxwell systems Comm. Pure Appl. Math. 1989 729 757

[11] Glassey, Robert T. The Cauchy problem in kinetic theory 1996

[12] Glassey, Robert T., Schaeffer, Jack On symmetric solutions of the relativistic Vlasov-Poisson system Comm. Math. Phys. 1985 459 473

[13] Glassey, R. T., Schaeffer, J. W. Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data Comm. Math. Phys. 1988 353 384

[14] Glassey, Robert T., Schaeffer, Jack The relativistic Vlasov-Maxwell system in two space dimensions. I, II Arch. Rational Mech. Anal. 1998

[15] Glassey, Robert T., Schaeffer, Jack On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions Math. Methods Appl. Sci. 2001 143 157

[16] Glassey, Robert T., Strauss, Walter A. Singularity formation in a collisionless plasma could occur only at high velocities Arch. Rational Mech. Anal. 1986 59 90

[17] Guo, Yan, Rein, Gerhard Isotropic steady states in galactic dynamics Comm. Math. Phys. 2001 607 629

[18] Lieb, Elliott H., Yau, Horng-Tzer The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics Comm. Math. Phys. 1987 147 174

[19] Lions, P.-L., Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system Invent. Math. 1991 415 430

[20] Martã­N-Garcã­A, Josã© M., Gundlach, Carsten Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system Phys. Rev. D (3) 2002

[21] Merle, Frank, Raphael, Pierre The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Ann. of Math. (2) 2005 157 222

[22] Merle, F., Raphael, P. Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 2003 591 642

[23] Merle, Frank, Raphael, Pierre On universality of blow-up profile for 𝐿² critical nonlinear Schrödinger equation Invent. Math. 2004 565 672

[24] Merle, Frank, Raphael, Pierre On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation J. Amer. Math. Soc. 2006 37 90

[25] Merle, Frank, Raphael, Pierre Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation Comm. Math. Phys. 2005 675 704

[26] Pfaffelmoser, K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data J. Differential Equations 1992 281 303

[27] Raphael, Pierre Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation Math. Ann. 2005 577 609

[28] Raphaã«L, Pierre Existence and stability of a solution blowing up on a sphere for an 𝐿²-supercritical nonlinear Schrödinger equation Duke Math. J. 2006 199 258

[29] Rein, G., Rendall, A. D. Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data Comm. Math. Phys. 1992 561 583

[30] Schaeffer, Jack Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions Comm. Partial Differential Equations 1991 1313 1335

[31] Schaeffer, Jack Steady states in galactic dynamics Arch. Ration. Mech. Anal. 2004 1 19

[32] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576

Cité par Sources :