Voir la notice de l'article provenant de la source American Mathematical Society
Lemou, Mohammed 1 ; Méhats, Florian 2 ; Raphaël, Pierre 3
@article{10_1090_S0894_0347_07_00579_6,
author = {Lemou, Mohammed and M\~A{\textcopyright}hats, Florian and Rapha\~A{\guillemotleft}l, Pierre},
title = {Stable self-similar blow up dynamics for the three dimensional relativistic gravitational {Vlasov-Poisson} system},
journal = {Journal of the American Mathematical Society},
pages = {1019--1063},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2008},
doi = {10.1090/S0894-0347-07-00579-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/}
}
TY - JOUR AU - Lemou, Mohammed AU - Méhats, Florian AU - Raphaël, Pierre TI - Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system JO - Journal of the American Mathematical Society PY - 2008 SP - 1019 EP - 1063 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/ DO - 10.1090/S0894-0347-07-00579-6 ID - 10_1090_S0894_0347_07_00579_6 ER -
%0 Journal Article %A Lemou, Mohammed %A Méhats, Florian %A Raphaël, Pierre %T Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system %J Journal of the American Mathematical Society %D 2008 %P 1019-1063 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00579-6/ %R 10.1090/S0894-0347-07-00579-6 %F 10_1090_S0894_0347_07_00579_6
Lemou, Mohammed; Méhats, Florian; Raphaël, Pierre. Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1019-1063. doi: 10.1090/S0894-0347-07-00579-6
[1] Global symmetric solutions of the initial value problem of stellar dynamics J. Differential Equations 1977 342 364
[2] , , Stationary spherically symmetric models in stellar dynamics Arch. Rational Mech. Anal. 1986 159 183
[3] , , Kinetic equations and asymptotic theory 2000
[4] , Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997
[5] , Solutions globales du système de Yang-Mills-Vlasov (masse nulle) C. R. Acad. Sci. Paris Sér. I Math. 1990 785 788
[6] Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior J. Funct. Anal. 2006 143 211
[7] A note on the collapse of small data self-gravitating massless collisionless matter J. Hyperbolic Differ. Equ. 2006 589 598
[8] , An extension principle for the Einstein-Vlasov system in spherical symmetry Ann. Henri Poincaré 2005 1137 1155
[9] Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity Math. Methods Appl. Sci. 1986 533 558
[10] , Global weak solutions of Vlasov-Maxwell systems Comm. Pure Appl. Math. 1989 729 757
[11] The Cauchy problem in kinetic theory 1996
[12] , On symmetric solutions of the relativistic Vlasov-Poisson system Comm. Math. Phys. 1985 459 473
[13] , Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data Comm. Math. Phys. 1988 353 384
[14] , The relativistic Vlasov-Maxwell system in two space dimensions. I, II Arch. Rational Mech. Anal. 1998
[15] , On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions Math. Methods Appl. Sci. 2001 143 157
[16] , Singularity formation in a collisionless plasma could occur only at high velocities Arch. Rational Mech. Anal. 1986 59 90
[17] , Isotropic steady states in galactic dynamics Comm. Math. Phys. 2001 607 629
[18] , The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics Comm. Math. Phys. 1987 147 174
[19] , Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system Invent. Math. 1991 415 430
[20] , Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system Phys. Rev. D (3) 2002
[21] , The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Ann. of Math. (2) 2005 157 222
[22] , Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 2003 591 642
[23] , On universality of blow-up profile for ð¿Â² critical nonlinear Schrödinger equation Invent. Math. 2004 565 672
[24] , On a sharp lower bound on the blow-up rate for the ð¿Â² critical nonlinear Schrödinger equation J. Amer. Math. Soc. 2006 37 90
[25] , Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation Comm. Math. Phys. 2005 675 704
[26] Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data J. Differential Equations 1992 281 303
[27] Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation Math. Ann. 2005 577 609
[28] Existence and stability of a solution blowing up on a sphere for an ð¿Â²-supercritical nonlinear Schrödinger equation Duke Math. J. 2006 199 258
[29] , Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data Comm. Math. Phys. 1992 561 583
[30] Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions Comm. Partial Differential Equations 1991 1313 1335
[31] Steady states in galactic dynamics Arch. Ration. Mech. Anal. 2004 1 19
[32] Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576
Cité par Sources :