Euclidean distortion and the sparsest cut
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 1-21

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that every $n$-point metric space of negative type (and, in particular, every $n$-point subset of $L_1$) embeds into a Euclidean space with distortion $O(\sqrt {\log n} \cdot \log \log n)$, a result which is tight up to the iterated logarithm factor. As a consequence, we obtain the best known polynomial-time approximation algorithm for the Sparsest Cut problem with general demands. If the demand is supported on a subset of size $k$, we achieve an approximation ratio of $O(\sqrt {\log k}\cdot \log \log k)$.
DOI : 10.1090/S0894-0347-07-00573-5

Arora, Sanjeev 1 ; Lee, James 2 ; Naor, Assaf 3

1 Department of Computer Science, Princeton University, 356 Olden Street, Princeton, New Jersey 08544-2087
2 Department of Mathematics, University of Washington, Seattle, Washington 98195
3 Courant Institute of Mathematical Sciences, New York University, Warren Weaver Hall 1305, 251 Mercer Street, New York, New York 10012
@article{10_1090_S0894_0347_07_00573_5,
     author = {Arora, Sanjeev and Lee, James and Naor, Assaf},
     title = {Euclidean distortion and the sparsest cut},
     journal = {Journal of the American Mathematical Society},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00573-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00573-5/}
}
TY  - JOUR
AU  - Arora, Sanjeev
AU  - Lee, James
AU  - Naor, Assaf
TI  - Euclidean distortion and the sparsest cut
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1
EP  - 21
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00573-5/
DO  - 10.1090/S0894-0347-07-00573-5
ID  - 10_1090_S0894_0347_07_00573_5
ER  - 
%0 Journal Article
%A Arora, Sanjeev
%A Lee, James
%A Naor, Assaf
%T Euclidean distortion and the sparsest cut
%J Journal of the American Mathematical Society
%D 2008
%P 1-21
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00573-5/
%R 10.1090/S0894-0347-07-00573-5
%F 10_1090_S0894_0347_07_00573_5
Arora, Sanjeev; Lee, James; Naor, Assaf. Euclidean distortion and the sparsest cut. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 1-21. doi: 10.1090/S0894-0347-07-00573-5

[1] Achlioptas, Dimitris Database-friendly random projections: Johnson-Lindenstrauss with binary coins J. Comput. System Sci. 2003 671 687

[2] Klein, Philip, Agrawal, Ajit, Ravi, R., Rao, Satish Approximation through multicommodity flow 1990 726 737

[3] Arora, Sanjeev, Rao, Satish, Vazirani, Umesh Expander flows, geometric embeddings and graph partitioning 2004 222 231

[4] Aumann, Yonatan, Rabani, Yuval An 𝑂(log𝑘) approximate min-cut max-flow theorem and approximation algorithm SIAM J. Comput. 1998 291 301

[5] Bartal, Yair Probabilistic approximation of metric spaces and its algorithmic applications 1996 184 193

[6] Bourgain, J. On Lipschitz embedding of finite metric spaces in Hilbert space Israel J. Math. 1985 46 52

[7] Calinescu, Gruia, Karloff, Howard, Rabani, Yuval Approximation algorithms for the 0-extension problem 2001 8 16

[8] Deza, Michel Marie, Laurent, Monique Geometry of cuts and metrics 1997

[9] Enflo, Per On the nonexistence of uniform homeomorphisms between 𝐿_{𝑝}-spaces Ark. Mat. 1969 103 105

[10] Fakcharoenphol, Jittat, Rao, Satish, Talwar, Kunal A tight bound on approximating arbitrary metrics by tree metrics 2003 448 455

[11] Figiel, T., Lindenstrauss, J., Milman, V. D. The dimension of almost spherical sections of convex bodies Acta Math. 1977 53 94

[12] Goemans, Michel X. Semidefinite programming in combinatorial optimization Math. Programming 1997 143 161

[13] Grã¶Tschel, M., Lovã¡Sz, L., Schrijver, A. The ellipsoid method and its consequences in combinatorial optimization Combinatorica 1981 169 197

[14] Heinonen, Juha Lectures on analysis on metric spaces 2001

[15] Johnson, William B., Lindenstrauss, Joram Extensions of Lipschitz mappings into a Hilbert space 1984 189 206

[16] Krauthgamer, R., Lee, J. R., Mendel, M., Naor, A. Measured descent: a new embedding method for finite metrics Geom. Funct. Anal. 2005 839 858

[17] Lee, James R., Mendel, Manor, Naor, Assaf Metric structures in 𝐿₁: dimension, snowflakes, and average distortion European J. Combin. 2005 1180 1190

[18] Lee, J. R., Naor, A. Embedding the diamond graph in 𝐿_{𝑝} and dimension reduction in 𝐿₁ Geom. Funct. Anal. 2004 745 747

[19] Lee, James R., Naor, Assaf Extending Lipschitz functions via random metric partitions Invent. Math. 2005 59 95

[20] Leighton, Tom, Rao, Satish Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms J. ACM 1999 787 832

[21] Linial, Nathan, London, Eran, Rabinovich, Yuri The geometry of graphs and some of its algorithmic applications Combinatorica 1995 215 245

[22] Linial, Nathan, Saks, Michael Low diameter graph decompositions Combinatorica 1993 441 454

[23] Matouå¡Ek, Jiå™Ã­ Lectures on discrete geometry 2002

[24] Shahrokhi, Farhad, Matula, D. W. The maximum concurrent flow problem J. Assoc. Comput. Mach. 1990 318 334

[25] Mendel, Manor, Naor, Assaf Euclidean quotients of finite metric spaces Adv. Math. 2004 451 494

[26] Milman, Vitali D., Schechtman, Gideon Asymptotic theory of finite-dimensional normed spaces 1986

[27] Naor, Assaf, Peres, Yuval, Schramm, Oded, Sheffield, Scott Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces Duke Math. J. 2006 165 197

[28] Naor, Assaf, Rabani, Yuval, Sinclair, Alistair Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs J. Funct. Anal. 2005 273 303

[29] Naor, Assaf, Schechtman, Gideon Remarks on non linear type and Pisier’s inequality J. Reine Angew. Math. 2002 213 236

[30] Rao, Satish Small distortion and volume preserving embeddings for planar and Euclidean metrics 1999 300 306

[31] Vazirani, Vijay V. Approximation algorithms 2001

Cité par Sources :