The noncommutative Choquet boundary
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1065-1084

Voir la notice de l'article provenant de la source American Mathematical Society

Let $S$ be an operator system–a self-adjoint linear subspace of a unital $C^*$-algebra $A$ such that $\mathbf 1\in S$ and $A=C^*(S)$ is generated by $S$. A boundary representation for $S$ is an irreducible representation $\pi$ of $C^*(S)$ on a Hilbert space with the property that $\pi \restriction _S$ has a unique completely positive extension to $C^*(S)$. The set $\partial _S$ of all (unitary equivalence classes of) boundary representations is the noncommutative counterpart of the Choquet boundary of a function system $S\subseteq C(X)$ that separates points of $X$. It is known that the closure of the Choquet boundary of a function system $S$ is the Šilov boundary of $X$ relative to $S$. The corresponding noncommutative problem of whether every operator system has “sufficiently many" boundary representations was formulated in 1969, but has remained unsolved despite progress on related issues. In particular, it was unknown if $\partial _S\neq \emptyset$ for generic $S$. In this paper we show that every separable operator system has sufficiently many boundary representations. Our methods use separability in an essential way.
DOI : 10.1090/S0894-0347-07-00570-X

Arveson, William 1

1 Department of Mathematics, University of California, Berkeley, California 94720
@article{10_1090_S0894_0347_07_00570_X,
     author = {Arveson, William},
     title = {The noncommutative {Choquet} boundary},
     journal = {Journal of the American Mathematical Society},
     pages = {1065--1084},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00570-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00570-X/}
}
TY  - JOUR
AU  - Arveson, William
TI  - The noncommutative Choquet boundary
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1065
EP  - 1084
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00570-X/
DO  - 10.1090/S0894-0347-07-00570-X
ID  - 10_1090_S0894_0347_07_00570_X
ER  - 
%0 Journal Article
%A Arveson, William
%T The noncommutative Choquet boundary
%J Journal of the American Mathematical Society
%D 2008
%P 1065-1084
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00570-X/
%R 10.1090/S0894-0347-07-00570-X
%F 10_1090_S0894_0347_07_00570_X
Arveson, William. The noncommutative Choquet boundary. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1065-1084. doi: 10.1090/S0894-0347-07-00570-X

[1] Agler, Jim An abstract approach to model theory 1988 1 23

[2] Arveson, William B. Subalgebras of 𝐶*-algebras Acta Math. 1969 141 224

[3] Arveson, William Subalgebras of 𝐶*-algebras. II Acta Math. 1972 271 308

[4] Arveson, William An invitation to 𝐶*-algebras 1976

[5] Akemann, Charles, Weaver, Nik Consistency of a counterexample to Naimark’s problem Proc. Natl. Acad. Sci. USA 2004 7522 7525

[6] Blackwell, David A Borel set not containing a graph Ann. Math. Statist. 1968 1345 1347

[7] Blecher, David P. The Shilov boundary of an operator space and the characterization theorems J. Funct. Anal. 2001 280 343

[8] Blecher, David P., Le Merdy, Christian Operator algebras and their modules—an operator space approach 2004

[9] Dixmier, Jacques Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann) 1957

[10] Dritschel, Michael A., Mccullough, Scott A. Boundary representations for families of representations of operator algebras and spaces J. Operator Theory 2005 159 167

[11] Hamana, Masamichi Injective envelopes of 𝐶*-algebras J. Math. Soc. Japan 1979 181 197

[12] Hamana, Masamichi Injective envelopes of operator systems Publ. Res. Inst. Math. Sci. 1979 773 785

[13] Muhly, Paul S., Solel, Baruch An algebraic characterization of boundary representations 1998 189 196

[14] Paulsen, Vern Completely bounded maps and operator algebras 2002

[15] Phelps, Robert R. Lectures on Choquet’s theorem 1966

[16] Phelps, Robert R. Lectures on Choquet’s theorem 2001

Cité par Sources :