Voir la notice de l'article provenant de la source American Mathematical Society
Hiraga, Kaoru 1 ; Ichino, Atsushi 2 ; Ikeda, Tamotsu 1
@article{10_1090_S0894_0347_07_00567_X,
     author = {Hiraga, Kaoru and Ichino, Atsushi and Ikeda, Tamotsu},
     title = {Formal degrees and adjoint {\dh}{\textthreequarters}-factors},
     journal = {Journal of the American Mathematical Society},
     pages = {283--304},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00567-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/}
}
                      
                      
                    TY - JOUR AU - Hiraga, Kaoru AU - Ichino, Atsushi AU - Ikeda, Tamotsu TI - Formal degrees and adjoint ð¾-factors JO - Journal of the American Mathematical Society PY - 2008 SP - 283 EP - 304 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/ DO - 10.1090/S0894-0347-07-00567-X ID - 10_1090_S0894_0347_07_00567_X ER -
%0 Journal Article %A Hiraga, Kaoru %A Ichino, Atsushi %A Ikeda, Tamotsu %T Formal degrees and adjoint ð¾-factors %J Journal of the American Mathematical Society %D 2008 %P 283-304 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/ %R 10.1090/S0894-0347-07-00567-X %F 10_1090_S0894_0347_07_00567_X
Hiraga, Kaoru; Ichino, Atsushi; Ikeda, Tamotsu. Formal degrees and adjoint ð¾-factors. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 283-304. doi: 10.1090/S0894-0347-07-00567-X
[1] The local behaviour of weighted orbital integrals Duke Math. J. 1988 223 293
[2] Unipotent automorphic representations: conjectures Astérisque 1989 13 71
[3] , Plancherel measure for ðºð¿(ð,ð¹) and ðºð¿(ð,ð·): explicit formulas and Bernstein decomposition J. Number Theory 2005 26 66
[4] Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup Invent. Math. 1976 233 259
[5] Characters of nonconnected, reductive ð-adic groups Canad. J. Math. 1987 149 167
[6] The fundamental lemma for stable base change Duke Math. J. 1990 255 302
[7] Invariant harmonic analysis on the Schwartz space of a reductive ð-adic group 1991 101 121
[8] , , Représentations des algèbres centrales simples ð-adiques 1984 33 117
[9] Some results on reducibility for unitary groups and local Asai ð¿-functions J. Reine Angew. Math. 1994 65 95
[10] On the motive of a reductive group Invent. Math. 1997 287 313
[11] On the motive of ðº and the principal homomorphism ðð¿ââÌðº Asian J. Math. 1997 208 213
[12] Harmonic analysis on real reductive groups. I. The theory of the constant term J. Functional Analysis 1975 104 204
[13] Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula Ann. of Math. (2) 1976 117 201
[14] Admissible invariant distributions on reductive ð-adic groups 1999
[15] , The geometry and cohomology of some simple Shimura varieties 2001
[16] Une preuve simple des conjectures de Langlands pour ðºð¿(ð) sur un corps ð-adique Invent. Math. 2000 439 455
[17] Twisted endoscopy and the generic packet conjecture Israel J. Math. 2002 253 289
[18] Stable trace formula: cuspidal tempered terms Duke Math. J. 1984 611 650
[19] Stable trace formula: elliptic singular terms Math. Ann. 1986 365 399
[20] Tamagawa numbers Ann. of Math. (2) 1988 629 646
[21] , Foundations of twisted endoscopy Astérisque 1999
[22] On the functional equations satisfied by Eisenstein series 1976
[23] The volume of a compact Lie group Invent. Math. 1980 93 95
[24] Orbital integrals in reductive groups Ann. of Math. (2) 1972 505 510
[25] Formal degrees and ð¿-packets of unipotent discrete series representations of exceptional ð-adic groups J. Reine Angew. Math. 2000 37 93
[26] An application of the building to orbital integrals Compositio Math. 1980/81 417 423
[27] Automorphic representations of unitary groups in three variables 1990
[28] A proof of Langlandsâ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330
[29] Twisted endoscopy and reducibility of induced representations for ð-adic groups Duke Math. J. 1992 1 41
[30] Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces Compositio Math. 2000 291 325
[31] La formule de Plancherel pour les groupes ð-adiques (dâaprès Harish-Chandra) J. Inst. Math. Jussieu 2003 235 333
Cité par Sources :