Formal degrees and adjoint 𝛾-factors
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 283-304

Voir la notice de l'article provenant de la source American Mathematical Society

We give a conjectural formula for the formal degree of a discrete series representation in terms of the adjoint $\gamma$-factor. Our conjecture is supported by various examples and is compatible with the Weyl dimension formula. Using twisted endoscopy, we also verify the conjecture for a stable discrete series representation of $\operatorname {U}(3)$ over a non-archimedean local field of characteristic zero.
DOI : 10.1090/S0894-0347-07-00567-X

Hiraga, Kaoru 1 ; Ichino, Atsushi 2 ; Ikeda, Tamotsu 1

1 Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
2 Department of Mathematics, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
@article{10_1090_S0894_0347_07_00567_X,
     author = {Hiraga, Kaoru and Ichino, Atsushi and Ikeda, Tamotsu},
     title = {Formal degrees and adjoint {\dh}›{\textthreequarters}-factors},
     journal = {Journal of the American Mathematical Society},
     pages = {283--304},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00567-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/}
}
TY  - JOUR
AU  - Hiraga, Kaoru
AU  - Ichino, Atsushi
AU  - Ikeda, Tamotsu
TI  - Formal degrees and adjoint 𝛾-factors
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 283
EP  - 304
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/
DO  - 10.1090/S0894-0347-07-00567-X
ID  - 10_1090_S0894_0347_07_00567_X
ER  - 
%0 Journal Article
%A Hiraga, Kaoru
%A Ichino, Atsushi
%A Ikeda, Tamotsu
%T Formal degrees and adjoint 𝛾-factors
%J Journal of the American Mathematical Society
%D 2008
%P 283-304
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00567-X/
%R 10.1090/S0894-0347-07-00567-X
%F 10_1090_S0894_0347_07_00567_X
Hiraga, Kaoru; Ichino, Atsushi; Ikeda, Tamotsu. Formal degrees and adjoint 𝛾-factors. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 283-304. doi: 10.1090/S0894-0347-07-00567-X

[1] Arthur, James The local behaviour of weighted orbital integrals Duke Math. J. 1988 223 293

[2] Arthur, James Unipotent automorphic representations: conjectures Astérisque 1989 13 71

[3] Aubert, Anne-Marie, Plymen, Roger Plancherel measure for 𝐺𝐿(𝑛,𝐹) and 𝐺𝐿(𝑚,𝐷): explicit formulas and Bernstein decomposition J. Number Theory 2005 26 66

[4] Borel, Armand Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup Invent. Math. 1976 233 259

[5] Clozel, Laurent Characters of nonconnected, reductive 𝑝-adic groups Canad. J. Math. 1987 149 167

[6] Clozel, Laurent The fundamental lemma for stable base change Duke Math. J. 1990 255 302

[7] Clozel, Laurent Invariant harmonic analysis on the Schwartz space of a reductive 𝑝-adic group 1991 101 121

[8] Deligne, P., Kazhdan, D., Vignã©Ras, M.-F. Représentations des algèbres centrales simples 𝑝-adiques 1984 33 117

[9] Goldberg, David Some results on reducibility for unitary groups and local Asai 𝐿-functions J. Reine Angew. Math. 1994 65 95

[10] Gross, Benedict H. On the motive of a reductive group Invent. Math. 1997 287 313

[11] Gross, Benedict H. On the motive of 𝐺 and the principal homomorphism 𝑆𝐿₂→̂𝐺 Asian J. Math. 1997 208 213

[12] Harish-Chandra Harmonic analysis on real reductive groups. I. The theory of the constant term J. Functional Analysis 1975 104 204

[13] Harish-Chandra Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula Ann. of Math. (2) 1976 117 201

[14] Harish-Chandra Admissible invariant distributions on reductive 𝑝-adic groups 1999

[15] Harris, Michael, Taylor, Richard The geometry and cohomology of some simple Shimura varieties 2001

[16] Henniart, Guy Une preuve simple des conjectures de Langlands pour 𝐺𝐿(𝑛) sur un corps 𝑝-adique Invent. Math. 2000 439 455

[17] Konno, Takuya Twisted endoscopy and the generic packet conjecture Israel J. Math. 2002 253 289

[18] Kottwitz, Robert E. Stable trace formula: cuspidal tempered terms Duke Math. J. 1984 611 650

[19] Kottwitz, Robert E. Stable trace formula: elliptic singular terms Math. Ann. 1986 365 399

[20] Kottwitz, Robert E. Tamagawa numbers Ann. of Math. (2) 1988 629 646

[21] Kottwitz, Robert E., Shelstad, Diana Foundations of twisted endoscopy Astérisque 1999

[22] Langlands, Robert P. On the functional equations satisfied by Eisenstein series 1976

[23] Macdonald, I. G. The volume of a compact Lie group Invent. Math. 1980 93 95

[24] Ranga Rao, R. Orbital integrals in reductive groups Ann. of Math. (2) 1972 505 510

[25] Reeder, Mark Formal degrees and 𝐿-packets of unipotent discrete series representations of exceptional 𝑝-adic groups J. Reine Angew. Math. 2000 37 93

[26] Rogawski, Jonathan D. An application of the building to orbital integrals Compositio Math. 1980/81 417 423

[27] Rogawski, Jonathan D. Automorphic representations of unitary groups in three variables 1990

[28] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[29] Shahidi, Freydoon Twisted endoscopy and reducibility of induced representations for 𝑝-adic groups Duke Math. J. 1992 1 41

[30] Shahidi, Freydoon Poles of intertwining operators via endoscopy: the connection with prehomogeneous vector spaces Compositio Math. 2000 291 325

[31] Waldspurger, J.-L. La formule de Plancherel pour les groupes 𝑝-adiques (d’après Harish-Chandra) J. Inst. Math. Jussieu 2003 235 333

Cité par Sources :