@article{10_1090_S0894_0347_06_00544_3,
author = {Kim, Ju-Lee},
title = {Supercuspidal representations: {An} exhaustion theorem},
journal = {Journal of the American Mathematical Society},
pages = {273--320},
year = {2007},
volume = {20},
number = {2},
doi = {10.1090/S0894-0347-06-00544-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/}
}
TY - JOUR AU - Kim, Ju-Lee TI - Supercuspidal representations: An exhaustion theorem JO - Journal of the American Mathematical Society PY - 2007 SP - 273 EP - 320 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/ DO - 10.1090/S0894-0347-06-00544-3 ID - 10_1090_S0894_0347_06_00544_3 ER -
%0 Journal Article %A Kim, Ju-Lee %T Supercuspidal representations: An exhaustion theorem %J Journal of the American Mathematical Society %D 2007 %P 273-320 %V 20 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/ %R 10.1090/S0894-0347-06-00544-3 %F 10_1090_S0894_0347_06_00544_3
Kim, Ju-Lee. Supercuspidal representations: An exhaustion theorem. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 273-320. doi: 10.1090/S0894-0347-06-00544-3
[1] Refined anisotropic 𝐾-types and supercuspidal representations Pacific J. Math. 1998 1 32
[2] , Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive 𝑝-adic group Michigan Math. J. 2002 263 286
[3] , Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups J. Reine Angew. Math. 2004 1 35
[4] , An intertwining result for 𝑝-adic groups Canad. J. Math. 2000 449 467
[5] , The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups 1993
[6] , The admissible dual of 𝑆𝐿(𝑁). I Ann. Sci. École Norm. Sup. (4) 1993 261 280
[7] , The admissible dual of 𝑆𝐿(𝑁). II Proc. London Math. Soc. (3) 1994 317 379
[8] , Smooth representations of reductive 𝑝-adic groups: structure theory via types Proc. London Math. Soc. (3) 1998 582 634
[9] , Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251
[10] Homogeneity results for invariant distributions of a reductive 𝑝-adic group Ann. Sci. École Norm. Sup. (4) 2002 391 422
[11] Parametrizing nilpotent orbits via Bruhat-Tits theory Ann. of Math. (2) 2002 295 332
[12] Les 𝐶*-algèbres et leurs représentations 1996 403
[13] Admissible invariant distributions on reductive 𝑝-adic groups 1999
[14] Eisenstein series over finite fields 1970 76 88
[15] Collected papers. Vol. I 1984
[16] The Fourier transform and germs of characters (case of 𝐺𝑙_{𝑛} over a 𝑝-adic field) Math. Ann. 1974 305 322
[17] Some qualitative results on the representation theory of 𝐺𝑙_{𝑛} over a 𝑝-adic field Pacific J. Math. 1977 479 538
[18] Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛} Pacific J. Math. 1977 437 460
[19] Harish-Chandra homomorphisms for 𝔭-adic groups 1985
[20] , Hecke algebra isomorphisms for 𝐺𝐿(𝑛) over a 𝑝-adic field J. Algebra 1990 388 424
[21] , On Harish-Chandra induction and restriction for modules of Levi subgroups J. Algebra 1994 172 183
[22] Hecke algebras of classical groups over 𝑝-adic fields and supercuspidal representations Amer. J. Math. 1999 967 1029
[23] Dual blobs and Plancherel formulas Bull. Soc. Math. France 2004 55 80
[24] , Character expansions and unrefined minimal 𝐾-types Amer. J. Math. 2003 1199 1234
[25] , K-types and Γ-asymptotic expansions J. Reine Angew. Math. 2006 189 236
[26] Level zero 𝐺-types Compositio Math. 1999 135 157
[27] Local constants and the tame Langlands correspondence Amer. J. Math. 1986 863 930
[28] , Unrefined minimal 𝐾-types for 𝑝-adic groups Invent. Math. 1994 393 408
[29] , Jacquet functors and unrefined minimal 𝐾-types Comment. Math. Helv. 1996 98 121
[30] Galois-fixed points in the Bruhat-Tits building of a reductive group Bull. Soc. Math. France 2001 169 174
[31] Immeubles des groupes réducitifs sur les corps locaux 1977
[32] Semisimple characters for 𝑝-adic classical groups Duke Math. J. 2005 123 173
[33] Geometry of dual spaces of reductive groups (non-Archimedean case) J. Analyse Math. 1988 139 181
[34] Homogénéité de certaines distributions sur les groupes 𝑝-adiques Inst. Hautes Études Sci. Publ. Math. 1995 25 72
[35] La formule de Plancherel pour les groupes 𝑝-adiques (d’après Harish-Chandra) J. Inst. Math. Jussieu 2003 235 333
[36] Construction of tame supercuspidal representations J. Amer. Math. Soc. 2001 579 622
Cité par Sources :