Supercuspidal representations: An exhaustion theorem
Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 273-320

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be a reductive $p$-adic group. We prove that all supercuspidal representations of $G$ arise through Yu’s construction subject to certain hypotheses on $k$ (depending on $G$). As a corollary, under the same hypotheses, we see that any supercuspidal representation is compactly induced from a representation of an open subgroup which is compact modulo the center.
DOI : 10.1090/S0894-0347-06-00544-3

Kim, Ju-Lee 1, 2

1 Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
2 Department of Mathematics, Massachusetts Institute of Technology, 2-275, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_06_00544_3,
     author = {Kim, Ju-Lee},
     title = {Supercuspidal representations: {An} exhaustion theorem},
     journal = {Journal of the American Mathematical Society},
     pages = {273--320},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00544-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/}
}
TY  - JOUR
AU  - Kim, Ju-Lee
TI  - Supercuspidal representations: An exhaustion theorem
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 273
EP  - 320
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/
DO  - 10.1090/S0894-0347-06-00544-3
ID  - 10_1090_S0894_0347_06_00544_3
ER  - 
%0 Journal Article
%A Kim, Ju-Lee
%T Supercuspidal representations: An exhaustion theorem
%J Journal of the American Mathematical Society
%D 2007
%P 273-320
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00544-3/
%R 10.1090/S0894-0347-06-00544-3
%F 10_1090_S0894_0347_06_00544_3
Kim, Ju-Lee. Supercuspidal representations: An exhaustion theorem. Journal of the American Mathematical Society, Tome 20 (2007) no. 2, pp. 273-320. doi: 10.1090/S0894-0347-06-00544-3

[1] Adler, Jeffrey D. Refined anisotropic 𝐾-types and supercuspidal representations Pacific J. Math. 1998 1 32

[2] Adler, Jeffrey D., Debacker, Stephen Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive 𝑝-adic group Michigan Math. J. 2002 263 286

[3] Adler, Jeffrey D., Debacker, Stephen Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups J. Reine Angew. Math. 2004 1 35

[4] Adler, Jeffrey D., Roche, Alan An intertwining result for 𝑝-adic groups Canad. J. Math. 2000 449 467

[5] Bushnell, Colin J., Kutzko, Philip C. The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups 1993

[6] Bushnell, Colin J., Kutzko, Philip C. The admissible dual of 𝑆𝐿(𝑁). I Ann. Sci. École Norm. Sup. (4) 1993 261 280

[7] Bushnell, Colin J., Kutzko, Philip C. The admissible dual of 𝑆𝐿(𝑁). II Proc. London Math. Soc. (3) 1994 317 379

[8] Bushnell, Colin J., Kutzko, Philip C. Smooth representations of reductive 𝑝-adic groups: structure theory via types Proc. London Math. Soc. (3) 1998 582 634

[9] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[10] Debacker, Stephen Homogeneity results for invariant distributions of a reductive 𝑝-adic group Ann. Sci. École Norm. Sup. (4) 2002 391 422

[11] Debacker, Stephen Parametrizing nilpotent orbits via Bruhat-Tits theory Ann. of Math. (2) 2002 295 332

[12] Dixmier, Jacques Les 𝐶*-algèbres et leurs représentations 1996 403

[13] Harish-Chandra Admissible invariant distributions on reductive 𝑝-adic groups 1999

[14] Harish-Chandra Eisenstein series over finite fields 1970 76 88

[15] Harish-Chandra Collected papers. Vol. I 1984

[16] Howe, Roger The Fourier transform and germs of characters (case of 𝐺𝑙_{𝑛} over a 𝑝-adic field) Math. Ann. 1974 305 322

[17] Howe, Roger E. Some qualitative results on the representation theory of 𝐺𝑙_{𝑛} over a 𝑝-adic field Pacific J. Math. 1977 479 538

[18] Howe, Roger E. Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛} Pacific J. Math. 1977 437 460

[19] Howe, Roger Harish-Chandra homomorphisms for 𝔭-adic groups 1985

[20] Howe, Roger, Moy, Allen Hecke algebra isomorphisms for 𝐺𝐿(𝑛) over a 𝑝-adic field J. Algebra 1990 388 424

[21] Howlett, R. B., Lehrer, G. I. On Harish-Chandra induction and restriction for modules of Levi subgroups J. Algebra 1994 172 183

[22] Kim, Ju-Lee Hecke algebras of classical groups over 𝑝-adic fields and supercuspidal representations Amer. J. Math. 1999 967 1029

[23] Kim, Ju-Lee Dual blobs and Plancherel formulas Bull. Soc. Math. France 2004 55 80

[24] Kim, Ju-Lee, Murnaghan, Fiona Character expansions and unrefined minimal 𝐾-types Amer. J. Math. 2003 1199 1234

[25] Kim, Ju-Lee, Murnaghan, Fiona K-types and Γ-asymptotic expansions J. Reine Angew. Math. 2006 189 236

[26] Morris, Lawrence Level zero 𝐺-types Compositio Math. 1999 135 157

[27] Moy, Allen Local constants and the tame Langlands correspondence Amer. J. Math. 1986 863 930

[28] Moy, Allen, Prasad, Gopal Unrefined minimal 𝐾-types for 𝑝-adic groups Invent. Math. 1994 393 408

[29] Moy, Allen, Prasad, Gopal Jacquet functors and unrefined minimal 𝐾-types Comment. Math. Helv. 1996 98 121

[30] Prasad, Gopal Galois-fixed points in the Bruhat-Tits building of a reductive group Bull. Soc. Math. France 2001 169 174

[31] Rousseau, Guy Immeubles des groupes réducitifs sur les corps locaux 1977

[32] Stevens, Shaun Semisimple characters for 𝑝-adic classical groups Duke Math. J. 2005 123 173

[33] Tadiä‡, Marko Geometry of dual spaces of reductive groups (non-Archimedean case) J. Analyse Math. 1988 139 181

[34] Waldspurger, J.-L. Homogénéité de certaines distributions sur les groupes 𝑝-adiques Inst. Hautes Études Sci. Publ. Math. 1995 25 72

[35] Waldspurger, J.-L. La formule de Plancherel pour les groupes 𝑝-adiques (d’après Harish-Chandra) J. Inst. Math. Jussieu 2003 235 333

[36] Yu, Jiu-Kang Construction of tame supercuspidal representations J. Amer. Math. Soc. 2001 579 622

Cité par Sources :