Intermediate subfactors with no extra structure
Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 219-265

Voir la notice de l'article provenant de la source American Mathematical Society

If $N\subseteq P,Q\subseteq M$ are type II$_1$ factors with $N’\cap M =\mathbb C id$ and $[M:N]\infty$ we show that restrictions on the standard invariants of the elementary inclusions $N\subseteq P$, $N\subseteq Q$, $P\subseteq M$ and $Q\subseteq M$ imply drastic restrictions on the indices and angles between the subfactors. In particular we show that if these standard invariants are trivial and the conditional expectations onto $P$ and $Q$ do not commute, then $[M:N]$ is $6$ or $6+4\sqrt 2$. In the former case $N$ is the fixed point algebra for an outer action of $S_3$ on $M$ and the angle is $\pi /3$, and in the latter case the angle is $\cos ^{-1}(\sqrt 2-1)$ and an example may be found in the GHJ subfactor family. The techniques of proof rely heavily on planar algebras.
DOI : 10.1090/S0894-0347-06-00531-5

Grossman, Pinhas 1 ; Jones, Vaughan 1

1 Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
@article{10_1090_S0894_0347_06_00531_5,
     author = {Grossman, Pinhas and Jones, Vaughan},
     title = {Intermediate subfactors with no extra structure},
     journal = {Journal of the American Mathematical Society},
     pages = {219--265},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00531-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00531-5/}
}
TY  - JOUR
AU  - Grossman, Pinhas
AU  - Jones, Vaughan
TI  - Intermediate subfactors with no extra structure
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 219
EP  - 265
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00531-5/
DO  - 10.1090/S0894-0347-06-00531-5
ID  - 10_1090_S0894_0347_06_00531_5
ER  - 
%0 Journal Article
%A Grossman, Pinhas
%A Jones, Vaughan
%T Intermediate subfactors with no extra structure
%J Journal of the American Mathematical Society
%D 2007
%P 219-265
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00531-5/
%R 10.1090/S0894-0347-06-00531-5
%F 10_1090_S0894_0347_06_00531_5
Grossman, Pinhas; Jones, Vaughan. Intermediate subfactors with no extra structure. Journal of the American Mathematical Society, Tome 20 (2007) no. 1, pp. 219-265. doi: 10.1090/S0894-0347-06-00531-5

[1] Birman, Joan S. Braids, links, and mapping class groups 1974

[2] Bisch, Dietmar A note on intermediate subfactors Pacific J. Math. 1994 201 216

[3] Bisch, Dietmar Bimodules, higher relative commutants and the fusion algebra associated to a subfactor 1997 13 63

[4] Bisch, Dietmar, Jones, Vaughan Algebras associated to intermediate subfactors Invent. Math. 1997 89 157

[5] Bisch, Dietmar, Jones, Vaughan A note on free composition of subfactors 1997 339 361

[6] Bisch, Dietmar, Jones, Vaughan Singly generated planar algebras of small dimension Duke Math. J. 2000 41 75

[7] Bisch, Dietmar, Jones, Vaughan Singly generated planar algebras of small dimension. II Adv. Math. 2003 297 318

[8] Bratteli, Ola Inductive limits of finite dimensional 𝐶*-algebras Trans. Amer. Math. Soc. 1972 195 234

[9] Connes, A. Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸ Ann. of Math. (2) 1976 73 115

[10] Evans, David E., Kawahigashi, Yasuyuki Quantum symmetries on operator algebras 1998

[11] Goldman, Malcolm On subfactors of factors of type 𝐼𝐼₁ Michigan Math. J. 1959 167 172

[12] Goodman, Frederick M., De La Harpe, Pierre, Jones, Vaughan F. R. Coxeter graphs and towers of algebras 1989

[13] Izumi, Masaki Application of fusion rules to classification of subfactors Publ. Res. Inst. Math. Sci. 1991 953 994

[14] Izumi, Masaki, Kosaki, Hideki On a subfactor analogue of the second cohomology Rev. Math. Phys. 2002 733 757

[15] Jones, Vaughan F. R. Actions of finite groups on the hyperfinite type 𝐼𝐼₁ factor Mem. Amer. Math. Soc. 1980

[16] Jones, V. F. R. Index for subfactors Invent. Math. 1983 1 25

[17] Jones, Vaughan F. R. A polynomial invariant for knots via von Neumann algebras Bull. Amer. Math. Soc. (N.S.) 1985 103 111

[18] Jones, V. F. R. On knot invariants related to some statistical mechanical models Pacific J. Math. 1989 311 334

[19] Jones, Vaughan F. R. The planar algebra of a bipartite graph 2000 94 117

[20] Jones, Vaughan F. R. The annular structure of subfactors 2001 401 463

[21] Jones, V. F. R. On a family of almost commuting endomorphisms J. Funct. Anal. 1994 84 90

[22] Jones, V., Sunder, V. S. Introduction to subfactors 1997

[23] Jones, Vaughan F. R., Xu, Feng Intersections of finite families of finite index subfactors Internat. J. Math. 2004 717 733

[24] Landau, Zeph A. Fuss-Catalan algebras and chains of intermediate subfactors Pacific J. Math. 2001 325 367

[25] Okamoto, Shingo Invariants for subfactors arising from Coxeter graphs 1991 84 103

[26] Pimsner, Mihai, Popa, Sorin Entropy and index for subfactors Ann. Sci. École Norm. Sup. (4) 1986 57 106

[27] Popa, S. Classification of subfactors: the reduction to commuting squares Invent. Math. 1990 19 43

[28] Popa, Sorin An axiomatization of the lattice of higher relative commutants of a subfactor Invent. Math. 1995 427 445

[29] Sano, Takashi, Watatani, Yasuo Angles between two subfactors J. Operator Theory 1994 209 241

[30] Sauvageot, Jean-Luc Sur le produit tensoriel relatif d’espaces de Hilbert J. Operator Theory 1983 237 252

[31] Temperley, H. N. V., Lieb, E. H. Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem Proc. Roy. Soc. London Ser. A 1971 251 280

[32] Watatani, Yasuo Lattices of intermediate subfactors J. Funct. Anal. 1996 312 334

Cité par Sources :