Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 579-623

Voir la notice de l'article provenant de la source American Mathematical Society

The aim of this paper is to prove a stretched-exponential bound for the decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations. A corollary is the Central Limit Theorem for the Teichmüller flow on the moduli space of abelian differentials with prescribed singularities.
DOI : 10.1090/S0894-0347-06-00528-5

Bufetov, Alexander 1, 2

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 (Until June 30, 2006) Department of Mathematics, The University of Chicago, 5734 South University Avenue, Chicago, Illinois 60637; (starting July 1, 2006) Department of Mathematics, Rice University, MS 136, 6100 Main Street, Houston, Texas 77251-1892
@article{10_1090_S0894_0347_06_00528_5,
     author = {Bufetov, Alexander},
     title = {Decay of correlations for the {Rauzy-Veech-Zorich} induction map on the space of interval exchange transformations and the central limit theorem for the {Teichm\~A{\textonequarter}ller} flow on the moduli space of {Abelian} differentials},
     journal = {Journal of the American Mathematical Society},
     pages = {579--623},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00528-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00528-5/}
}
TY  - JOUR
AU  - Bufetov, Alexander
TI  - Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 579
EP  - 623
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00528-5/
DO  - 10.1090/S0894-0347-06-00528-5
ID  - 10_1090_S0894_0347_06_00528_5
ER  - 
%0 Journal Article
%A Bufetov, Alexander
%T Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials
%J Journal of the American Mathematical Society
%D 2006
%P 579-623
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00528-5/
%R 10.1090/S0894-0347-06-00528-5
%F 10_1090_S0894_0347_06_00528_5
Bufetov, Alexander. Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 579-623. doi: 10.1090/S0894-0347-06-00528-5

[1] Veech, William A. Projective Swiss cheeses and uniquely ergodic interval exchange transformations 1981 113 193

[2] Veech, William A. Interval exchange transformations J. Analyse Math. 1978 222 272

[3] Veech, William A. Projective Swiss cheeses and uniquely ergodic interval exchange transformations 1981 113 193

[4] Zorich, Anton Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents Ann. Inst. Fourier (Grenoble) 1996 325 370

[5] Oseledec, V. I. The spectrum of ergodic automorphisms Dokl. Akad. Nauk SSSR 1966 1009 1011

[6] Rauzy, Gã©Rard Échanges d’intervalles et transformations induites Acta Arith. 1979 315 328

[7] Gordin, M. I. The central limit theorem for stationary processes Dokl. Akad. Nauk SSSR 1969 739 741

[8] Liverani, Carlangelo Central limit theorem for deterministic systems 1996 56 75

[9] Keane, Michael Interval exchange transformations Math. Z. 1975 25 31

[10] Forni, Giovanni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus Ann. of Math. (2) 2002 1 103

[11] Young, Lai-Sang Recurrence times and rates of mixing Israel J. Math. 1999 153 188

[12] Maume-Deschamps, Vã©Ronique Projective metrics and mixing properties on towers Trans. Amer. Math. Soc. 2001 3371 3389

[13] Sinaä­, Ja. G. Gibbs measures in ergodic theory Uspehi Mat. Nauk 1972 21 64

[14] Bunimovich, L. A., Sinaä­, Ya. G. Statistical properties of Lorentz gas with periodic configuration of scatterers Comm. Math. Phys. 1980/81 479 497

[15] Melbourne, Ian, Tã¶Rã¶K, Andrei Statistical limit theorems for suspension flows Israel J. Math. 2004 191 209

[16] Kolmogorov, A. N. A local limit theorem for classical Markov chains Izv. Akad. Nauk SSSR Ser. Mat. 1949 281 300

[17] Series, Caroline The modular surface and continued fractions J. London Math. Soc. (2) 1985 69 80

[18] Series, Caroline Geometrical Markov coding of geodesics on surfaces of constant negative curvature Ergodic Theory Dynam. Systems 1986 601 625

[19] Kerckhoff, S. P. Simplicial systems for interval exchange maps and measured foliations Ergodic Theory Dynam. Systems 1985 257 271

[20] Masur, Howard Interval exchange transformations and measured foliations Ann. of Math. (2) 1982 169 200

[21] Doob, J. L. Stochastic processes 1990

[22] Rohlin, V. A. Exact endomorphisms of a Lebesgue space Izv. Akad. Nauk SSSR Ser. Mat. 1961 499 530

[23] Rohlin, V. A. New progress in the theory of transformations with invariant measure Uspehi Mat. Nauk 3 26

[24] Sinaä­, Ya. G. Topics in ergodic theory 1994

[25] Kontsevich, Maxim, Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities Invent. Math. 2003 631 678

[26] Kornfel′D, I. P., Sinaä­, Ya. G., Fomin, S. V. Ergodicheskaya teoriya 1980 384

[27] Hubbard, John, Masur, Howard Quadratic differentials and foliations Acta Math. 1979 221 274

[28] Kontsevich, M. Lyapunov exponents and Hodge theory 1997 318 332

Cité par Sources :