Cayley groups
Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 921-967

Voir la notice de l'article provenant de la source American Mathematical Society

The classical Cayley map, $X \mapsto (I_n-X)(I_n+X)^{-1}$, is a birational isomorphism between the special orthogonal group SO$_n$ and its Lie algebra ${\mathfrak so}_n$, which is SO$_n$-equivariant with respect to the conjugating and adjoint actions, respectively. We ask whether or not maps with these properties can be constructed for other algebraic groups. We show that the answer is usually “no", with a few exceptions. In particular, we show that a Cayley map for the group SL$_n$ exists if and only if $n \leqslant 3$, answering an old question of Luna.
DOI : 10.1090/S0894-0347-06-00522-4

Lemire, Nicole 1 ; Popov, Vladimir 2 ; Reichstein, Zinovy 3

1 Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
2 Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 119991, Russia
3 Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
@article{10_1090_S0894_0347_06_00522_4,
     author = {Lemire, Nicole and Popov, Vladimir and Reichstein, Zinovy},
     title = {Cayley groups},
     journal = {Journal of the American Mathematical Society},
     pages = {921--967},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2006},
     doi = {10.1090/S0894-0347-06-00522-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00522-4/}
}
TY  - JOUR
AU  - Lemire, Nicole
AU  - Popov, Vladimir
AU  - Reichstein, Zinovy
TI  - Cayley groups
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 921
EP  - 967
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00522-4/
DO  - 10.1090/S0894-0347-06-00522-4
ID  - 10_1090_S0894_0347_06_00522_4
ER  - 
%0 Journal Article
%A Lemire, Nicole
%A Popov, Vladimir
%A Reichstein, Zinovy
%T Cayley groups
%J Journal of the American Mathematical Society
%D 2006
%P 921-967
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00522-4/
%R 10.1090/S0894-0347-06-00522-4
%F 10_1090_S0894_0347_06_00522_4
Lemire, Nicole; Popov, Vladimir; Reichstein, Zinovy. Cayley groups. Journal of the American Mathematical Society, Tome 19 (2006) no. 4, pp. 921-967. doi: 10.1090/S0894-0347-06-00522-4

[1] Bessenrodt, Christine, Le Bruyn, Lieven Stable rationality of certain 𝑃𝐺𝐿_{𝑛}-quotients Invent. Math. 1991 179 199

[2] Berhuy, Grã©Gory, Monsurrã², Marina, Tignol, Jean-Pierre Cohomological invariants and 𝑅-triviality of adjoint classical groups Math. Z. 2004 313 323

[3] Borel, Armand Linear algebraic groups 1991

[4] Bourbaki, N. Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie 1972 320

[5] Bourbaki, N. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines 1968

[6] Bourbaki, N. Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées 1975 271

[7] Brown, Kenneth S. Cohomology of groups 1982

[8] Carlson, Jon F. Modules and group algebras 1996

[9] Chevalley, C. On algebraic group varieties J. Math. Soc. Japan 1954 303 324

[10] Chevalley, Claude The algebraic theory of spinors and Clifford algebras 1997

[11] Cliff, Gerald, Weiss, Alfred Summands of permutation lattices for finite groups Proc. Amer. Math. Soc. 1990 17 20

[12] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques La 𝑅-équivalence sur les tores Ann. Sci. École Norm. Sup. (4) 1977 175 229

[13] Colliot-Thã©Lã¨Ne, Jean-Louis, Sansuc, Jean-Jacques Principal homogeneous spaces under flasque tori: applications J. Algebra 1987 148 205

[14] Cortella, Anne, Kunyavskiä­, Boris Rationality problem for generic tori in simple groups J. Algebra 2000 771 793

[15] Chernousov, V., Merkurjev, A. 𝑅-equivalence and special unitary groups J. Algebra 1998 175 198

[16] Curtis, Charles W., Reiner, Irving Methods of representation theory. Vol. I 1990

[17] Dieudonnã©, Jean A. La géométrie des groupes classiques 1971

[18] Dolgachev, Igor V. Rationality of fields of invariants 1987 3 16

[19] Hajja, Mowaffaq, Kang, Ming Chang Some actions of symmetric groups J. Algebra 1995 511 535

[20] Hã¶Lder, Otto Die Gruppen der Ordnungen 𝑝³, 𝑝𝑞², 𝑝𝑞𝑟, 𝑝⁴ Math. Ann. 1893 301 412

[21] Iskovskih, V. A. Minimal models of rational surfaces over arbitrary fields Izv. Akad. Nauk SSSR Ser. Mat. 1979

[22] Iskovskikh, V. A. Factorization of birational mappings of rational surfaces from the point of view of Mori theory Uspekhi Mat. Nauk 1996 3 72

[23] Iskovskikh, V. A. Two nonconjugate embeddings of the group 𝑆₃×𝑍₂ into the Cremona group Tr. Mat. Inst. Steklova 2003 105 109

[24] Kostant, Bertram, Michor, Peter W. The generalized Cayley map from an algebraic group to its Lie algebra 2003 259 296

[25] Knus, Max-Albert, Merkurjev, Alexander, Rost, Markus, Tignol, Jean-Pierre The book of involutions 1998

[26] Kneser, M. Lectures on Galois cohomology of classical groups 1969

[27] Le Bruyn, Lieven Centers of generic division algebras, the rationality problem 1965–1990 Israel J. Math. 1991 97 111

[28] Le Bruyn, Lieven Generic norm one tori Nieuw Arch. Wisk. (4) 1995 401 407

[29] Lemire, Nicole, Lorenz, Martin On certain lattices associated with generic division algebras J. Group Theory 2000 385 405

[30] Luna, Domingo Slices étales 1973 81 105

[31] Manin, Ju. I. Rational surfaces over perfect fields. II Mat. Sb. (N.S.) 1967 161 192

[32] Manin, Yu. I., Hazewinkel, M. Cubic forms: algebra, geometry, arithmetic 1974

[33] Merkurjev, A. S. 𝑅-equivalence and rationality problem for semisimple adjoint classical algebraic groups Inst. Hautes Études Sci. Publ. Math. 1996

[34] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[35] Popov, V. L. Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector fiberings Izv. Akad. Nauk SSSR Ser. Mat. 1974 294 322

[36] Popov, Vladimir Sections in invariant theory 1994 315 361

[37] Vinberg, È. B., Popov, V. L. Invariant theory 1989

[38] Postnikov, M. Lie groups and Lie algebras 1986 440

[39] Saltman, David J. Invariant fields of linear groups and division algebras 1988 279 297

[40] Shafarevich, Igor R. Basic algebraic geometry. 1 1994

[41] Speiser, A. Zahlentheoretische Sätze aus der Gruppentheorie Math. Z. 1919 1 6

[42] Springer, T. A. Linear algebraic groups 1998

[43] Swan, Richard G. Invariant rational functions and a problem of Steenrod Invent. Math. 1969 148 158

[44] Voskresenskiä­, V. E. Algebraic groups and their birational invariants 1998

[45] Voskresenskiä­, V. E., Klyachko, A. A. Toric Fano varieties and systems of roots Izv. Akad. Nauk SSSR Ser. Mat. 1984 237 263

[46] Weibel, Charles A. An introduction to homological algebra 1994

[47] Weil, Andrã© Algebras with involutions and the classical groups J. Indian Math. Soc. (N.S.) 1960

[48] Weyl, Hermann The Classical Groups. Their Invariants and Representations 1939

Cité par Sources :