A solution to the L space problem
Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 717-736

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper I will construct a non-separable hereditarily Lindelöf space (L space) without any additional axiomatic assumptions. The constructed space $\mathscr {L}$ is a subspace of ${\mathbb {T}}^{\omega _1}$ where $\mathbb {T}$ is the unit circle. It is shown to have a number of properties which may be of additional interest. For instance it is shown that the closure in $\mathbb {T}^{\omega _1}$ of any uncountable subset of $\mathscr {L}$ contains a canonical copy of $\mathbb {T}^{\omega _1}$. I will also show that there is a function $f:[\omega _1]^2 \to \omega _1$ such that if $A,B \subseteq \omega _1$ are uncountable and $\xi \omega _1$, then there are $\alpha \beta$ in $A$ and $B$ respectively with $f (\alpha ,\beta ) = \xi$. Previously it was unknown whether such a function existed even if $\omega _1$ was replaced by $2$. Finally, I will prove that there is no basis for the uncountable regular Hausdorff spaces of cardinality $\aleph _1$. The results all stem from the analysis of oscillations of coherent sequences $\langle e_\beta :\beta \omega _1\rangle$ of finite-to-one functions. I expect that the methods presented will have other applications as well.
DOI : 10.1090/S0894-0347-05-00517-5

Moore, Justin 1

1 Department of Mathematics, Boise State University, Boise, Idaho 83725
@article{10_1090_S0894_0347_05_00517_5,
     author = {Moore, Justin},
     title = {A solution to the {L} space problem},
     journal = {Journal of the American Mathematical Society},
     pages = {717--736},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00517-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00517-5/}
}
TY  - JOUR
AU  - Moore, Justin
TI  - A solution to the L space problem
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 717
EP  - 736
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00517-5/
DO  - 10.1090/S0894-0347-05-00517-5
ID  - 10_1090_S0894_0347_05_00517_5
ER  - 
%0 Journal Article
%A Moore, Justin
%T A solution to the L space problem
%J Journal of the American Mathematical Society
%D 2006
%P 717-736
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00517-5/
%R 10.1090/S0894-0347-05-00517-5
%F 10_1090_S0894_0347_05_00517_5
Moore, Justin. A solution to the L space problem. Journal of the American Mathematical Society, Tome 19 (2006) no. 3, pp. 717-736. doi: 10.1090/S0894-0347-05-00517-5

[1] Cassels, J. W. S. An introduction to Diophantine approximation 1957

[2] Fremlin, D. H. Consequences of Martin’s axiom 1984

[3] Gruenhage, Gary Perfectly normal compacta, cosmic spaces, and some partition problems 1990 85 95

[4] Hajnal, A., Juhã¡Sz, I. On hereditarily 𝛼-Lindelöf and hereditarily 𝛼-separable spaces Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1968 115 124

[5] Jech, T. Multiple forcing 1986

[6] Juhã¡Sz, I. A survey of 𝑆- and 𝐿-spaces 1980 675 688

[7] Kunen, Kenneth Strong 𝑆 and 𝐿 spaces under 𝑀𝐴 1977 265 268

[8] Kunen, Kenneth Set theory 1983

[9] Roitman, Judy Basic 𝑆 and 𝐿 1984 295 326

[10] Rudin, Mary Ellen 𝑆 and 𝐿 spaces 1980 431 444

[11] Szentmiklã³Ssy, Z. 𝑆-spaces and 𝐿-spaces under Martin’s axiom 1980 1139 1145

[12] TodoräEviä‡, Stevo Forcing positive partition relations Trans. Amer. Math. Soc. 1983 703 720

[13] TodoräEviä‡, Stevo Partitioning pairs of countable ordinals Acta Math. 1987 261 294

[14] TodoräEviä‡, Stevo Oscillations of real numbers 1988 325 331

[15] TodoräEviä‡, Stevo Partition problems in topology 1989

[16] Todorcevic, Stevo A classification of transitive relations on 𝜔₁ Proc. London Math. Soc. (3) 1996 501 533

[17] Todorcevic, Stevo Basis problems in combinatorial set theory Doc. Math. 1998 43 52

[18] Tukey, John W. Convergence and Uniformity in Topology 1940

[19] Vojtã¡Å¡, Peter Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis 1993 619 643

[20] Zenor, Phillip Hereditary 𝔪-separability and the hereditary 𝔪-Lindelöf property in product spaces and function spaces Fund. Math. 1980 175 180

Cité par Sources :