Variations of Hodge structures of a Teichmüller curve
Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 327-344

Voir la notice de l'article provenant de la source American Mathematical Society

Teichmüller curves are geodesic discs in Teichmüller space that project to an algebraic curve in the moduli space $M_g$. We show that for all $g \geq 2$ Teichmüller curves map to the locus of real multiplication in the moduli space of abelian varieties. Observe that McMullen has shown that precisely for $g=2$ the locus of real multiplication is stable under the $\textrm {SL}_2({\mathbb {R}})$-action on the tautological bundle $\Omega M_g$. We also show that Teichmüller curves are defined over number fields and we provide a completely algebraic description of Teichmüller curves in terms of Higgs bundles. As a consequence we show that the absolute Galois group acts on the set of Teichmüller curves.
DOI : 10.1090/S0894-0347-05-00512-6

Möller, Martin 1

1 Universität Essen, FB 6 (Mathematik), 45117 Essen, Germany
@article{10_1090_S0894_0347_05_00512_6,
     author = {M\~A{\textparagraph}ller, Martin},
     title = {Variations of {Hodge} structures of a {Teichm\~A{\textonequarter}ller} curve},
     journal = {Journal of the American Mathematical Society},
     pages = {327--344},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00512-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00512-6/}
}
TY  - JOUR
AU  - Möller, Martin
TI  - Variations of Hodge structures of a Teichmüller curve
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 327
EP  - 344
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00512-6/
DO  - 10.1090/S0894-0347-05-00512-6
ID  - 10_1090_S0894_0347_05_00512_6
ER  - 
%0 Journal Article
%A Möller, Martin
%T Variations of Hodge structures of a Teichmüller curve
%J Journal of the American Mathematical Society
%D 2006
%P 327-344
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00512-6/
%R 10.1090/S0894-0347-05-00512-6
%F 10_1090_S0894_0347_05_00512_6
Möller, Martin. Variations of Hodge structures of a Teichmüller curve. Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 327-344. doi: 10.1090/S0894-0347-05-00512-6

[1] Cohen, Paula, Wolfart, Jã¼Rgen Modular embeddings for some nonarithmetic Fuchsian groups Acta Arith. 1990 93 110

[2] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[3] Deligne, Pierre Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math. 1971 5 57

[4] Deligne, P. Un théorème de finitude pour la monodromie 1987 1 19

[5] Faltings, G. Arakelov’s theorem for abelian varieties Invent. Math. 1983 337 347

[6] Fulton, William, Harris, Joe Representation theory 1991

[7] Gutkin, Eugene, Judge, Chris Affine mappings of translation surfaces: geometry and arithmetic Duke Math. J. 2000 191 213

[8] Kollã¡R, Jã¡Nos Subadditivity of the Kodaira dimension: fibers of general type 1987 361 398

[9] Lange, Herbert, Birkenhake, Christina Complex abelian varieties 1992

[10] Mcmullen, Curtis T. Billiards and Teichmüller curves on Hilbert modular surfaces J. Amer. Math. Soc. 2003 857 885

[11] Mcmullen, Curtis T. Teichmüller geodesics of infinite complexity Acta Math. 2003 191 223

[12] Moonen, Ben Linearity properties of Shimura varieties. I J. Algebraic Geom. 1998 539 567

[13] Mã¶Ller, Martin Teichmüller curves, Galois actions and ̂𝐺𝑇-relations Math. Nachr. 2005 1061 1077

[14] Mumford, David Families of abelian varieties 1966 347 351

[15] Mumford, D. A note of Shimura’s paper “Discontinuous groups and abelian varieties” Math. Ann. 1969 345 351

[16] Schoen, Chad Varieties dominated by product varieties Internat. J. Math. 1996 541 571

[17] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

[18] Schmutz Schaller, Paul, Wolfart, Jã¼Rgen Semi-arithmetic Fuchsian groups and modular embeddings J. London Math. Soc. (2) 2000 13 24

[19] Simpson, Carlos T. Harmonic bundles on noncompact curves J. Amer. Math. Soc. 1990 713 770

[20] Shimura, Goro Moduli of abelian varieties and number theory 1966 312 332

[21] Smillie, John, Weiss, Barak Minimal sets for flows on moduli space Israel J. Math. 2004 249 260

[22] Takeuchi, Kisao On some discrete subgroups of 𝑆𝐿₂(𝑅) J. Fac. Sci. Univ. Tokyo Sect. I 1969 97 100

[23] Veech, W. A. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards Invent. Math. 1989 553 583

[24] Van Der Geer, Gerard Hilbert modular surfaces 1988

[25] Viehweg, Eckart, Zuo, Kang A characterization of certain Shimura curves in the moduli stack of abelian varieties J. Differential Geom. 2004 233 287

Cité par Sources :