Curvature and injectivity radius estimates for Einstein 4-manifolds
Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 487-525

Voir la notice de l'article provenant de la source American Mathematical Society

Let $M^4$ denote an Einstein $4$-manifold with Einstein constant, $\lambda$, normalized to satisfy $\lambda \in \{-3,0,3\}$. For $B_r(p)\subset M^4$, a metric ball, we prove a uniform estimate for the pointwise norm of the curvature tensor on $B_{\frac {1}{2}r}$, under the assumption that the $L_2$-norm of the curvature on $B_r(p)$ is less than a small positive constant, which is independent of $M^4$, and which in particular, does not depend on a lower bound on the volume of $B_r(p)$. In case $\lambda =-3$, we prove a lower injectivity radius bound analogous to that which occurs in the theorem of Margulis, for compact manifolds with negative sectional curvature, $-1\leq K_M0$. These estimates provide key tools in the study of singularity formation for $4$-dimensional Einstein metrics. As one application among others, we give a natural compactification of the moduli space of Einstein metrics with negative Einstein constant on a given $M^4$.
DOI : 10.1090/S0894-0347-05-00511-4

Cheeger, Jeff 1 ; Tian, Gang 2

1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012
2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Department of Mathematics, Princeton University, Princeton, New Jersey, 08544
@article{10_1090_S0894_0347_05_00511_4,
     author = {Cheeger, Jeff and Tian, Gang},
     title = {Curvature and injectivity radius estimates for {Einstein} 4-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {487--525},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00511-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00511-4/}
}
TY  - JOUR
AU  - Cheeger, Jeff
AU  - Tian, Gang
TI  - Curvature and injectivity radius estimates for Einstein 4-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 487
EP  - 525
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00511-4/
DO  - 10.1090/S0894-0347-05-00511-4
ID  - 10_1090_S0894_0347_05_00511_4
ER  - 
%0 Journal Article
%A Cheeger, Jeff
%A Tian, Gang
%T Curvature and injectivity radius estimates for Einstein 4-manifolds
%J Journal of the American Mathematical Society
%D 2006
%P 487-525
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00511-4/
%R 10.1090/S0894-0347-05-00511-4
%F 10_1090_S0894_0347_05_00511_4
Cheeger, Jeff; Tian, Gang. Curvature and injectivity radius estimates for Einstein 4-manifolds. Journal of the American Mathematical Society, Tome 19 (2006) no. 2, pp. 487-525. doi: 10.1090/S0894-0347-05-00511-4

[1] Anderson, Michael T. Ricci curvature bounds and Einstein metrics on compact manifolds J. Amer. Math. Soc. 1989 455 490

[2] Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature bounds Invent. Math. 1990 429 445

[3] Anderson, M. T. The 𝐿² structure of moduli spaces of Einstein metrics on 4-manifolds Geom. Funct. Anal. 1992 29 89

[4] Anderson, Michael T. Orbifold compactness for spaces of Riemannian metrics and applications Math. Ann. 2005 739 778

[5] Anderson, Michael T., Cheeger, Jeff Diffeomorphism finiteness for manifolds with Ricci curvature and 𝐿^{𝑛/2}-norm of curvature bounded Geom. Funct. Anal. 1991 231 252

[6] Bando, Shigetoshi, Kasue, Atsushi, Nakajima, Hiraku On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth Invent. Math. 1989 313 349

[7] Besse, Arthur L. Einstein manifolds 1987

[8] Calderbank, David M. J., Pedersen, Henrik Selfdual Einstein metrics with torus symmetry J. Differential Geom. 2002 485 521

[9] Cheeger, Jeff Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74

[10] Cheeger, J. Integral bounds on curvature elliptic estimates and rectifiability of singular sets Geom. Funct. Anal. 2003 20 72

[11] Cheeger, Jeff, Colding, Tobias H. Lower bounds on Ricci curvature and the almost rigidity of warped products Ann. of Math. (2) 1996 189 237

[12] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. I J. Differential Geom. 1997 406 480

[13] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. II J. Differential Geom. 2000 13 35

[14] Cheeger, Jeff, Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. III J. Differential Geom. 2000 37 74

[15] Cheeger, Jeff, Colding, Tobias H., Tian, Gang Constraints on singularities under Ricci curvature bounds C. R. Acad. Sci. Paris Sér. I Math. 1997 645 649

[16] Cheeger, J., Colding, T. H., Tian, G. On the singularities of spaces with bounded Ricci curvature Geom. Funct. Anal. 2002 873 914

[17] Cheeger, Jeff, Gromov, Mikhael Bounds on the von Neumann dimension of 𝐿²-cohomology and the Gauss-Bonnet theorem for open manifolds J. Differential Geom. 1985 1 34

[18] Cheeger, Jeff, Gromov, Mikhael Collapsing Riemannian manifolds while keeping their curvature bounded. I J. Differential Geom. 1986 309 346

[19] Cheeger, Jeff, Gromov, Mikhael Collapsing Riemannian manifolds while keeping their curvature bounded. II J. Differential Geom. 1990 269 298

[20] Cheeger, Jeff, Gromov, Mikhael Chopping Riemannian manifolds 1991 85 94

[21] Cheeger, Jeff, Fukaya, Kenji, Gromov, Mikhael Nilpotent structures and invariant metrics on collapsed manifolds J. Amer. Math. Soc. 1992 327 372

[22] Cheeger, Jeff, Gromov, Mikhail, Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53

[23] Cheeger, Jeff, Tian, Gang On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay Invent. Math. 1994 493 571

[24] Cheeger, Jeff, Tian, Gang Anti-self-duality of curvature and degeneration of metrics with special holonomy Comm. Math. Phys. 2005 391 417

[25] Cheng, Siu Yuen, Li, Peter, Yau, Shing Tung On the upper estimate of the heat kernel of a complete Riemannian manifold Amer. J. Math. 1981 1021 1063

[26] Croke, Christopher B. Some isoperimetric inequalities and eigenvalue estimates Ann. Sci. École Norm. Sup. (4) 1980 419 435

[27] Gibbons, G. W., Hawking, S. W. Classification of gravitational instanton symmetries Comm. Math. Phys. 1979 291 310

[28] Gromov, M. Almost flat manifolds J. Differential Geometry 1978 231 241

[29] Gromov, Mikhael Partial differential relations 1986

[30] Gromov, Mikhael Structures métriques pour les variétés riemanniennes 1981

[31] Gross, Mark, Wilson, P. M. H. Large complex structure limits of 𝐾3 surfaces J. Differential Geom. 2000 475 546

[32] Hong, Min-Chun, Tian, Gang Asymptotical behaviour of the Yang-Mills flow and singular Yang-Mills connections Math. Ann. 2004 441 472

[33] Lebrun, Claude Einstein metrics and Mostow rigidity Math. Res. Lett. 1995 1 8

[34] Lebrun, Claude Einstein metrics, four-manifolds, and differential topology 2003 235 255

[35] Li, Peter, Schoen, Richard 𝐿^{𝑝} and mean value properties of subharmonic functions on Riemannian manifolds Acta Math. 1984 279 301

[36] Lohkamp, Joachim Curvature ℎ-principles Ann. of Math. (2) 1995 457 498

[37] Morrey, Charles B., Jr. The problem of Plateau on a Riemannian manifold Ann. of Math. (2) 1948 807 851

[38] Nakajima, Hiraku Hausdorff convergence of Einstein 4-manifolds J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1988 411 424

[39] Schoen, Richard, Uhlenbeck, Karen A regularity theory for harmonic maps J. Differential Geometry 1982 307 335

[40] Taubes, Clifford Henry The Seiberg-Witten invariants and symplectic forms Math. Res. Lett. 1994 809 822

[41] Tian, G. On Calabi’s conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172

[42] Tian, Gang, Viaclovsky, Jeff Bach-flat asymptotically locally Euclidean metrics Invent. Math. 2005 357 415

[43] Uhlenbeck, Karen K. Removable singularities in Yang-Mills fields Comm. Math. Phys. 1982 11 29

[44] Witten, Edward Monopoles and four-manifolds Math. Res. Lett. 1994 769 796

[45] Yang, Deane Riemannian manifolds with small integral norm of curvature Duke Math. J. 1992 501 510

Cité par Sources :