Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00504_7,
author = {Zlato\r{A}{\textexclamdown}, Andrej},
title = {Sharp transition between extinction and propagation of reaction},
journal = {Journal of the American Mathematical Society},
pages = {251--263},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2006},
doi = {10.1090/S0894-0347-05-00504-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00504-7/}
}
TY - JOUR AU - Zlatoš, Andrej TI - Sharp transition between extinction and propagation of reaction JO - Journal of the American Mathematical Society PY - 2006 SP - 251 EP - 263 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00504-7/ DO - 10.1090/S0894-0347-05-00504-7 ID - 10_1090_S0894_0347_05_00504_7 ER -
%0 Journal Article %A Zlatoš, Andrej %T Sharp transition between extinction and propagation of reaction %J Journal of the American Mathematical Society %D 2006 %P 251-263 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00504-7/ %R 10.1090/S0894-0347-05-00504-7 %F 10_1090_S0894_0347_05_00504_7
Zlatoš, Andrej. Sharp transition between extinction and propagation of reaction. Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 251-263. doi: 10.1090/S0894-0347-05-00504-7
[1] , Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation 1975 5 49
[2] , , Convergence to equilibrium for semilinear parabolic problems in â^{â} Comm. Partial Differential Equations 2002 1793 1814
[3] , , Quenching of flames by fluid advection Comm. Pure Appl. Math. 2001 1320 1342
[4] , The approach of solutions of nonlinear diffusion equations to travelling front solutions Arch. Rational Mech. Anal. 1977 335 361
[5] Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory Mat. Sb. (N.S.) 1962 245 288
[6] Stabilization of the solutions of the equations of combustion theory with finite initial functions Mat. Sb. (N.S.) 1964 398 413
[7] Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders Ann. Inst. H. Poincaré C Anal. Non Linéaire 1997 499 552
[8] Shock waves and reaction-diffusion equations 1994
[9] Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media J. Statist. Phys. 1993 893 926
[10] Front propagation in heterogeneous media SIAM Rev. 2000 161 230
Cité par Sources :