Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00503_5,
author = {Young, Matthew},
title = {Low-lying zeros of families of elliptic curves},
journal = {Journal of the American Mathematical Society},
pages = {205--250},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2006},
doi = {10.1090/S0894-0347-05-00503-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00503-5/}
}
TY - JOUR AU - Young, Matthew TI - Low-lying zeros of families of elliptic curves JO - Journal of the American Mathematical Society PY - 2006 SP - 205 EP - 250 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00503-5/ DO - 10.1090/S0894-0347-05-00503-5 ID - 10_1090_S0894_0347_05_00503_5 ER -
%0 Journal Article %A Young, Matthew %T Low-lying zeros of families of elliptic curves %J Journal of the American Mathematical Society %D 2006 %P 205-250 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00503-5/ %R 10.1090/S0894-0347-05-00503-5 %F 10_1090_S0894_0347_05_00503_5
Young, Matthew. Low-lying zeros of families of elliptic curves. Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 205-250. doi: 10.1090/S0894-0347-05-00503-5
[1] , , , On the modularity of elliptic curves over ð: wild 3-adic exercises J. Amer. Math. Soc. 2001 843 939
[2] The average rank of elliptic curves. I Invent. Math. 1992 445 472
[3] , The number of elliptic curves over ð with conductor ð Manuscripta Math. 1996 95 102
[4] ð¿-functions and random matrices 2001 331 352
[5] , A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations Invent. Math. 2000 1 39
[6] , , Lâensemble exceptionnel dans la conjecture de Szpiro Bull. Soc. Math. France 1992 485 506
[7] , Heegner points and derivatives of ð¿-series Invent. Math. 1986 225 320
[8] , The distribution of Kummer sums at prime arguments J. Reine Angew. Math. 1979 111 130
[9] , Analytic number theory 2004
[10] , , Low lying zeros of families of ð¿-functions Inst. Hautes Ãtudes Sci. Publ. Math. 2000
[11] , Random matrices, Frobenius eigenvalues, and monodromy 1999
[12] , Zeroes of zeta functions and symmetry Bull. Amer. Math. Soc. (N.S.) 1999 1 26
[13] The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves Izv. Akad. Nauk SSSR Ser. Mat. 1988
[14] , The analytic rank of ð½â(ð) and zeros of automorphic ð¿-functions Duke Math. J. 1999 503 542
[15] , Explicit upper bound for the (analytic) rank of ð½â(ð) Israel J. Math. 2000 179 204
[16] Universal bounds on the torsion of elliptic curves Proc. London Math. Soc. (3) 1976 193 237
[17] Rang moyen de familles de courbes elliptiques et lois de Sato-Tate Monatsh. Math. 1995 127 136
[18] One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries Compos. Math. 2004 952 992
[19] , Rank frequencies for quadratic twists of elliptic curves Experiment. Math. 2001 559 569
[20] Low-lying zeros of ð¿-functions and random matrix theory Duke Math. J. 2001 147 181
[21] Equations over finite fields. An elementary approach 1976
[22] The arithmetic of elliptic curves 1986
[23] Advanced topics in the arithmetic of elliptic curves 1994
[24] The average rank of an algebraic family of elliptic curves J. Reine Angew. Math. 1998 227 236
[25] Fourier integrals in classical analysis 1993
[26] , On ranks of twists of elliptic curves and power-free values of binary forms J. Amer. Math. Soc. 1995 943 973
[27] , Ring-theoretic properties of certain Hecke algebras Ann. of Math. (2) 1995 553 572
[28] Modular elliptic curves and Fermatâs last theorem Ann. of Math. (2) 1995 443 551
Cité par Sources :