Voir la notice de l'article provenant de la source American Mathematical Society
Szemerédi, E. 1 ; Vu, V. 2
@article{10_1090_S0894_0347_05_00502_3,
author = {Szemer\~A{\textcopyright}di, E. and Vu, V.},
title = {Long arithmetic progressions in sumsets: {Thresholds} and bounds},
journal = {Journal of the American Mathematical Society},
pages = {119--169},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2006},
doi = {10.1090/S0894-0347-05-00502-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00502-3/}
}
TY - JOUR AU - Szemerédi, E. AU - Vu, V. TI - Long arithmetic progressions in sumsets: Thresholds and bounds JO - Journal of the American Mathematical Society PY - 2006 SP - 119 EP - 169 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00502-3/ DO - 10.1090/S0894-0347-05-00502-3 ID - 10_1090_S0894_0347_05_00502_3 ER -
%0 Journal Article %A Szemerédi, E. %A Vu, V. %T Long arithmetic progressions in sumsets: Thresholds and bounds %J Journal of the American Mathematical Society %D 2006 %P 119-169 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00502-3/ %R 10.1090/S0894-0347-05-00502-3 %F 10_1090_S0894_0347_05_00502_3
Szemerédi, E.; Vu, V. Long arithmetic progressions in sumsets: Thresholds and bounds. Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 119-169. doi: 10.1090/S0894-0347-05-00502-3
[1] The theory of partitions 1998
[2] Structure of sets with small sumset Astérisque 1999
[3] On arithmetic progressions in sums of sets of integers 1990 105 109
[4] On the representation of integers as the sums of distinct summands taken from a fixed set Acta Sci. Math. (Szeged) 1960 111 124
[5] A polynomial bound in Freimanâs theorem Duke Math. J. 2002 399 419
[6] On subset sums of a fixed set Acta Arith. 2003 207 211
[7] , Cyclic spaces for Grassmann derivatives and additive theory Bull. London Math. Soc. 1994 140 146
[8] On the representation of large integers as sums of distinct summands taken from a fixed set Acta Arith. 1961/62 345 354
[9] , Old and new problems and results in combinatorial number theory 1980 128
[10] , , Integer sum sets containing long arithmetic progressions J. London Math. Soc. (2) 1992 193 201
[11] New analytical results in subset-sum problem Discrete Math. 1993 205 217
[12] Foundations of a structural theory of set addition 1973
[13] Structure theory of set addition Astérisque 1999
[14] On the representation of integers as sums of distinct terms from a fixed sequence Canadian J. Math. 1966 643 655
[15] Complete sequences of polynomial values Duke Math. J. 1964 275 285
[16] Arithmetic progressions in sumsets Geom. Funct. Anal. 2002 584 597
[17] Unsolved problems in number theory 1994
[18] On the representation of integers as sums of distinct terms from a fixed set Acta Arith. 2000 99 104
[19] , On addition of two distinct sets of integers Acta Arith. 1995 85 91
[20] Optimal representations by sumsets and subset sums J. Number Theory 1997 127 143
[21] , On the maximal density of sum-free sets Acta Arith. 2000 225 229
[22] An addition theorem for the elementary Abelian group J. Combinatorial Theory 1968 53 58
[23] , Combinatorial number theory 1995 967 1018
[24] Generalized arithmetical progressions and sumsets Acta Math. Hungar. 1994 379 388
[25] Finite addition theorems. I J. Number Theory 1989 114 130
[26] On a conjecture of ErdÅs and Heilbronn Acta Arith. 1970 227 229
[27] The Hardy-Littlewood method 1997
Cité par Sources :