Zeta function of representations of compact 𝑝-adic analytic groups
Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 91-118

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be an FAb compact $p$-adic analytic group and suppose that $p>2$ or $p=2$ and $G$ is uniform. We prove that there are natural numbers $n_1, \ldots , n_k$ and functions $f_1(p^{-s}),\ldots , f_k(p^{-s})$ rational in $p^{-s}$ such that \[ \zeta ^G(s)=\sum _{\lambda \in \operatorname {Irr}(G)} \lambda (1) ^{-s}=\sum _{i=1}^kn_i^{-s}f_i(p^{-s}).\]
DOI : 10.1090/S0894-0347-05-00501-1

Jaikin-Zapirain, A. 1

1 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{10_1090_S0894_0347_05_00501_1,
     author = {Jaikin-Zapirain, A.},
     title = {Zeta function of representations of compact {\dh}‘-adic analytic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {91--118},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00501-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00501-1/}
}
TY  - JOUR
AU  - Jaikin-Zapirain, A.
TI  - Zeta function of representations of compact 𝑝-adic analytic groups
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 91
EP  - 118
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00501-1/
DO  - 10.1090/S0894-0347-05-00501-1
ID  - 10_1090_S0894_0347_05_00501_1
ER  - 
%0 Journal Article
%A Jaikin-Zapirain, A.
%T Zeta function of representations of compact 𝑝-adic analytic groups
%J Journal of the American Mathematical Society
%D 2006
%P 91-118
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00501-1/
%R 10.1090/S0894-0347-05-00501-1
%F 10_1090_S0894_0347_05_00501_1
Jaikin-Zapirain, A. Zeta function of representations of compact 𝑝-adic analytic groups. Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 91-118. doi: 10.1090/S0894-0347-05-00501-1

[1] Bass, Hyman, Lubotzky, Alexander, Magid, Andy R., Mozes, Shahar The proalgebraic completion of rigid groups Geom. Dedicata 2002 19 58

[2] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 1–3 1989

[3] Denef, J. The rationality of the Poincaré series associated to the 𝑝-adic points on a variety Invent. Math. 1984 1 23

[4] Denef, J. Multiplicity of the poles of the Poincaré series of a 𝑝-adic subanalytic set [1988?]

[5] Denef, Jan Arithmetic and geometric applications of quantifier elimination for valued fields 2000 173 198

[6] Denef, J., Van Den Dries, L. 𝑝-adic and real subanalytic sets Ann. of Math. (2) 1988 79 138

[7] Dixon, J. D., Du Sautoy, M. P. F., Mann, A., Segal, D. Analytic pro-𝑝 groups 1999

[8] Du Sautoy, Marcus P. F. Finitely generated groups, 𝑝-adic analytic groups and Poincaré series Ann. of Math. (2) 1993 639 670

[9] Digne, Franã§Ois, Michel, Jean Representations of finite groups of Lie type 1991

[10] Gonzã¡Lez-Sã¡Nchez, J., Jaikin-Zapirain, A. On the structure of normal subgroups of potent 𝑝-groups J. Algebra 2004 193 209

[11] Howe, Roger E. On representations of discrete, finitely generated, torsion-free, nilpotent groups Pacific J. Math. 1977 281 305

[12] Howe, Roger E. Kirillov theory for compact 𝑝-adic groups Pacific J. Math. 1977 365 381

[13] Ilani, Ishai Analytic pro-𝑝 groups and their Lie algebras J. Algebra 1995 34 58

[14] Isaacs, I. Martin Character theory of finite groups 1976

[15] Isaacs, I. M. Characters of 𝜋-separable groups J. Algebra 1984 98 128

[16] Kirillov, A. A. Merits and demerits of the orbit method Bull. Amer. Math. Soc. (N.S.) 1999 433 488

[17] Klopsch, Benjamin On the Lie theory of 𝑝-adic analytic groups Math. Z. 2005 713 730

[18] Khukhro, E. I. 𝑝-automorphisms of finite 𝑝-groups 1998

[19] Lazard, Michel Groupes analytiques 𝑝-adiques Inst. Hautes Études Sci. Publ. Math. 1965 389 603

[20] Lubotzky, Alexander, Martin, Benjamin Polynomial representation growth and the congruence subgroup problem Israel J. Math. 2004 293 316

[21] Lubotzky, Alexander, Shalev, Aner On some Λ-analytic pro-𝑝 groups Israel J. Math. 1994 307 337

[22] Suzuki, Michio Gun ron. Vol. 1 1977

Cité par Sources :