On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation
Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 37-90

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the $L^2$ critical nonlinear Schrödinger equation $iu_t=-\Delta u-|u|^{\frac {4}{N}}u$ with initial condition in the energy space $u(0,x)=u_0\in H^1$ and study the dynamics of finite time blow-up solutions. In an earlier sequence of papers, the authors established for a certain class of initial data on the basis of dispersive properties in $L^2_{loc}$ a sharp and stable upper bound on the blow-up rate: $|\nabla u(t)|_{L^2}\leq C\left (\frac {\log |\log (T-t)|}{T-t}\right )^{\frac {1}{2}}$. In an earlier paper, the authors then addressed the question of a lower bound on the blow-up rate and proved for this class of initial data the nonexistence of self-similar solutions, that is, $\lim _{t\to T}\sqrt {T-t}|\nabla u(t)|_{L^2}=+\infty .$ In this paper, we prove the sharp lower bound \[ |\nabla u(t)|_{L^2}\geq C \left (\frac {\log |\log (T-t)|}{T-t}\right )^{\frac {1}{2}}\] by exhibiting the dispersive structure in the scaling invariant space $L^2$ for this log-log regime. In addition, we will extend to the pure energy space $H^1$ a dynamical characterization of the solitons among the zero energy solutions.
DOI : 10.1090/S0894-0347-05-00499-6

Merle, Frank 1 ; Raphael, Pierre 1

1 Université de Cergy–Pontoise, Cergy-Pointoise, France, Institute for Advanced Studies and Centre National de la Recherche Scientifique
@article{10_1090_S0894_0347_05_00499_6,
     author = {Merle, Frank and Raphael, Pierre},
     title = {On a sharp lower bound on the blow-up rate for the {{\dh}{\textquestiondown}\^A{\texttwosuperior}} critical nonlinear {Schr\~A{\textparagraph}dinger} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {37--90},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2006},
     doi = {10.1090/S0894-0347-05-00499-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00499-6/}
}
TY  - JOUR
AU  - Merle, Frank
AU  - Raphael, Pierre
TI  - On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation
JO  - Journal of the American Mathematical Society
PY  - 2006
SP  - 37
EP  - 90
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00499-6/
DO  - 10.1090/S0894-0347-05-00499-6
ID  - 10_1090_S0894_0347_05_00499_6
ER  - 
%0 Journal Article
%A Merle, Frank
%A Raphael, Pierre
%T On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation
%J Journal of the American Mathematical Society
%D 2006
%P 37-90
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00499-6/
%R 10.1090/S0894-0347-05-00499-6
%F 10_1090_S0894_0347_05_00499_6
Merle, Frank; Raphael, Pierre. On a sharp lower bound on the blow-up rate for the 𝐿² critical nonlinear Schrödinger equation. Journal of the American Mathematical Society, Tome 19 (2006) no. 1, pp. 37-90. doi: 10.1090/S0894-0347-05-00499-6

[1] Akrivis, G. D., Dougalis, V. A., Karakashian, O. A., Mckinney, W. R. Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation SIAM J. Sci. Comput. 2003 186 212

[2] Berestycki, H., Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 1983 313 345

[3] Bourgain, J. Global solutions of nonlinear Schrödinger equations 1999

[4] Bourgain, Jean, Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997

[5] Dyachenko, S., Newell, A. C., Pushkarev, A., Zakharov, V. E. Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation Phys. D 1992 96 160

[6] Ginibre, J., Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case J. Functional Analysis 1979 1 32

[7] Kwong, Man Kam Uniqueness of positive solutions of Δ𝑢-𝑢+𝑢^{𝑝} Arch. Rational Mech. Anal. 1989 243 266

[8] Landman, M. J., Papanicolaou, G. C., Sulem, C., Sulem, P.-L. Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension Phys. Rev. A (3) 1988 3837 3843

[9] MariåŸ, Mihai Existence of nonstationary bubbles in higher dimensions J. Math. Pures Appl. (9) 2002 1207 1239

[10] Martel, Y., Merle, F. Instability of solitons for the critical generalized Korteweg-de Vries equation Geom. Funct. Anal. 2001 74 123

[11] Mcleod, Kevin Uniqueness of positive radial solutions of Δ𝑢+𝑓(𝑢) Trans. Amer. Math. Soc. 1993 495 505

[12] Merle, F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power Duke Math. J. 1993 427 454

[13] Merle, Frank, Raphael, Pierre Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation 2002

[14] Merle, F., Raphael, P. Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation Geom. Funct. Anal. 2003 591 642

[15] Merle, Frank, Raphael, Pierre On universality of blow-up profile for 𝐿² critical nonlinear Schrödinger equation Invent. Math. 2004 565 672

[16] Merle, Frank, Raphael, Pierre Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation Comm. Math. Phys. 2005 675 704

[17] Pelinovsky, Dmitry Radiative effects to the adiabatic dynamics of envelope-wave solitons Phys. D 1998 301 313

[18] Raphael, Pierre Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation Math. Ann. 2005 577 609

[19] Sulem, Catherine, Sulem, Pierre-Louis The nonlinear Schrödinger equation 1999

[20] Weinstein, Michael I. Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491

[21] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576

Cité par Sources :