Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_05_00489_3,
     author = {Kiselev, Alexander},
     title = {Imbedded singular continuous spectrum for {Schr\~A{\textparagraph}dinger} operators},
     journal = {Journal of the American Mathematical Society},
     pages = {571--603},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2005},
     doi = {10.1090/S0894-0347-05-00489-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00489-3/}
}
                      
                      
                    TY - JOUR AU - Kiselev, Alexander TI - Imbedded singular continuous spectrum for Schrödinger operators JO - Journal of the American Mathematical Society PY - 2005 SP - 571 EP - 603 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00489-3/ DO - 10.1090/S0894-0347-05-00489-3 ID - 10_1090_S0894_0347_05_00489_3 ER -
%0 Journal Article %A Kiselev, Alexander %T Imbedded singular continuous spectrum for Schrödinger operators %J Journal of the American Mathematical Society %D 2005 %P 571-603 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-05-00489-3/ %R 10.1090/S0894-0347-05-00489-3 %F 10_1090_S0894_0347_05_00489_3
Kiselev, Alexander. Imbedded singular continuous spectrum for Schrödinger operators. Journal of the American Mathematical Society, Tome 18 (2005) no. 3, pp. 571-603. doi: 10.1090/S0894-0347-05-00489-3
[1] Exponential localization in one-dimensional disordered systems Duke Math. J. 1982 191 213
[2] , Spectral theory of random Schrödinger operators 1990
[3] , Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results J. Amer. Math. Soc. 1998 771 797
[4] , WKB and spectral analysis of one-dimensional Schrödinger operators with slowly varying potentials Comm. Math. Phys. 2001 245 262
[5] , Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials Geom. Funct. Anal. 2002 1174 1234
[6] , , , Schrödinger operators with application to quantum mechanics and global geometry 1987
[7] , On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials Comm. Math. Phys. 1999 341 347
[8] On the coexistence of absolutely continuous and singular continuous components of the spectral measure for some Sturm-Liouville operators with square summable potential J. Differential Equations 2003 90 104
[9] , , Transfer matrices and transport for Schrödinger operators Ann. Inst. Fourier (Grenoble) 2004 787 830
[10] , Sum rules for Jacobi matrices and their applications to spectral theory Ann. of Math. (2) 2003 253 321
[11] , , Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators Comm. Math. Phys. 1998 1 45
[12] , Finite gap potentials and WKB asymptotics for one-dimensional Schrödinger operators Comm. Math. Phys. 2001 409 435
[13] Quantum dynamics and decompositions of singular continuous spectra J. Funct. Anal. 1996 406 445
[14] Inverse Sturm-Liouville problems 1987
[15] Sturm-Liouville operators and applications 1986
[16] On the dense point spectrum of Schrödinger and Dirac operators Teoret. Mat. Fiz. 1986 18 28
[17] Singular continuous measures in scattering theory Comm. Math. Phys. 1978 13 36
[18] , Methods of modern mathematical physics. I. Functional analysis 1972
[19] , Methods of modern mathematical physics. III 1979
[20] The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials Comm. Math. Phys. 1998 151 170
[21] Bounds on embedded singular spectrum for one-dimensional Schrödinger operators Proc. Amer. Math. Soc. 2000 161 171
[22] Schrödinger operators with decaying potentials: some counterexamples Duke Math. J. 2000 463 496
[23] Schrödinger operators in the twenty-first century 2000 283 288
[24] Some Schrödinger operators with dense point spectrum Proc. Amer. Math. Soc. 1997 203 208
[25] Operators with singular continuous spectrum. I. General operators Ann. of Math. (2) 1995 131 145
Cité par Sources :
