The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘)
Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 947-973

Voir la notice de l'article provenant de la source American Mathematical Society

Let $F_k(n,m)$ be a random $k$-CNF formula formed by selecting uniformly and independently $m$ out of all possible $k$-clauses on $n$ variables. It is well known that if $r \geq 2^k \log 2$, then $F_k(n,rn)$ is unsatisfiable with probability that tends to 1 as $n \to \infty$. We prove that if $r \leq 2^k \log 2 - t_k$, where $t_k = O(k)$, then $F_k(n,rn)$ is satisfiable with probability that tends to 1 as $n \to \infty$. Our technique, in fact, yields an explicit lower bound for the random $k$-SAT threshold for every $k$. For $k \geq 4$ our bounds improve all previously known such bounds.
DOI : 10.1090/S0894-0347-04-00464-3

Achlioptas, Dimitris 1 ; Peres, Yuval 2

1 Microsoft Research, One Microsoft Way, Redmond, Washington 98052
2 Department of Statistics, University of California, Berkeley, California 94720
@article{10_1090_S0894_0347_04_00464_3,
     author = {Achlioptas, Dimitris and Peres, Yuval},
     title = {The threshold for random {{\dh}‘˜-SAT} is 2^{{\dh}‘˜}log2-{\dh}‘‚({\dh}‘˜)},
     journal = {Journal of the American Mathematical Society},
     pages = {947--973},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00464-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/}
}
TY  - JOUR
AU  - Achlioptas, Dimitris
AU  - Peres, Yuval
TI  - The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘)
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 947
EP  - 973
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/
DO  - 10.1090/S0894-0347-04-00464-3
ID  - 10_1090_S0894_0347_04_00464_3
ER  - 
%0 Journal Article
%A Achlioptas, Dimitris
%A Peres, Yuval
%T The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘)
%J Journal of the American Mathematical Society
%D 2004
%P 947-973
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/
%R 10.1090/S0894-0347-04-00464-3
%F 10_1090_S0894_0347_04_00464_3
Achlioptas, Dimitris; Peres, Yuval. The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘). Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 947-973. doi: 10.1090/S0894-0347-04-00464-3

[1] Chao, Ming-Te, Franco, John Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the 𝑘-satisfiability problem Inform. Sci. 1990 289 314

[2] De Bruijn, N. G. Asymptotic methods in analysis 1981

[3] Dembo, Amir, Peres, Yuval, Rosen, Jay, Zeitouni, Ofer Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk Acta Math. 2001 239 270

[4] Dembo, Amir, Zeitouni, Ofer Large deviations techniques and applications 1998

[5] Dubois, O., Boufkhad, Y. A general upper bound for the satisfiability threshold of random 𝑟-SAT formulae J. Algorithms 1997 395 420

[6] Erdå‘S, P., Lovã¡Sz, L. Problems and results on 3-chromatic hypergraphs and some related questions 1975 609 627

[7] Erdå‘S, P., Taylor, S. J. Some problems concerning the structure of random walk paths Acta Math. Acad. Sci. Hungar. 1960

[8] Franco, John, Paull, Marvin Probabilistic analysis of the Davis-Putnam procedure for solving the satisfiability problem Discrete Appl. Math. 1983 77 87

[9] Frieze, Alan, Suen, Stephen Analysis of two simple heuristics on a random instance of 𝑘-SAT J. Algorithms 1996 312 355

[10] Janson, Svante, Stamatiou, Yannis C., Vamvakari, Malvina Bounding the unsatisfiability threshold of random 3-SAT Random Structures Algorithms 2000 103 116

[11] Kirousis, Lefteris M., Kranakis, Evangelos, Krizanc, Danny, Stamatiou, Yannis C. Approximating the unsatisfiability threshold of random formulas Random Structures Algorithms 1998 253 269

[12] Monasson, Rã©Mi, Zecchina, Riccardo Statistical mechanics of the random 𝐾-satisfiability model Phys. Rev. E (3) 1997 1357 1370

Cité par Sources :