Achlioptas, Dimitris  1 ; Peres, Yuval  2
@article{10_1090_S0894_0347_04_00464_3,
author = {Achlioptas, Dimitris and Peres, Yuval},
title = {The threshold for random {\ensuremath{\mathit{k}}-SAT} is {2^{\ensuremath{\mathit{k}}}log2-\ensuremath{\mathit{O}}(\ensuremath{\mathit{k}})}},
journal = {Journal of the American Mathematical Society},
pages = {947--973},
year = {2004},
volume = {17},
number = {4},
doi = {10.1090/S0894-0347-04-00464-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/}
}
TY - JOUR
AU - Achlioptas, Dimitris
AU - Peres, Yuval
TI - The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘)
JO - Journal of the American Mathematical Society
PY - 2004
SP - 947
EP - 973
VL - 17
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/
DO - 10.1090/S0894-0347-04-00464-3
ID - 10_1090_S0894_0347_04_00464_3
ER -
%0 Journal Article
%A Achlioptas, Dimitris
%A Peres, Yuval
%T The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘)
%J Journal of the American Mathematical Society
%D 2004
%P 947-973
%V 17
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00464-3/
%R 10.1090/S0894-0347-04-00464-3
%F 10_1090_S0894_0347_04_00464_3
Achlioptas, Dimitris; Peres, Yuval. The threshold for random 𝑘-SAT is 2^{𝑘}log2-𝑂(𝑘). Journal of the American Mathematical Society, Tome 17 (2004) no. 4, pp. 947-973. doi: 10.1090/S0894-0347-04-00464-3
[1] , Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the 𝑘-satisfiability problem Inform. Sci. 1990 289 314
[2] Asymptotic methods in analysis 1981
[3] , , , Thick points for planar Brownian motion and the Erdős-Taylor conjecture on random walk Acta Math. 2001 239 270
[4] , Large deviations techniques and applications 1998
[5] , A general upper bound for the satisfiability threshold of random 𝑟-SAT formulae J. Algorithms 1997 395 420
[6] , Problems and results on 3-chromatic hypergraphs and some related questions 1975 609 627
[7] , Some problems concerning the structure of random walk paths Acta Math. Acad. Sci. Hungar. 1960
[8] , Probabilistic analysis of the Davis-Putnam procedure for solving the satisfiability problem Discrete Appl. Math. 1983 77 87
[9] , Analysis of two simple heuristics on a random instance of 𝑘-SAT J. Algorithms 1996 312 355
[10] , , Bounding the unsatisfiability threshold of random 3-SAT Random Structures Algorithms 2000 103 116
[11] , , , Approximating the unsatisfiability threshold of random formulas Random Structures Algorithms 1998 253 269
[12] , Statistical mechanics of the random 𝐾-satisfiability model Phys. Rev. E (3) 1997 1357 1370
Cité par Sources :