Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 297-359

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the evolution problem for the Maxwell–Klein– Gordon system is locally well posed when the initial data belong to the Sobolev space $H^{\frac {1}{2} + \epsilon }$ for any $\epsilon > 0$. This is in spite of a complete failure of the standard model equations in the range $\frac {1}{2} s \frac {3}{4}$. The device that enables us to obtain inductive estimates is a new null structure which involves cancellations between the elliptic and hyperbolic terms in the full equations.
DOI : 10.1090/S0894-0347-03-00445-4

Machedon, Matei 1 ; Sterbenz, Jacob 1, 2

1 Department of Mathematics, University of Maryland, College Park, Maryland 20742
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_03_00445_4,
     author = {Machedon, Matei and Sterbenz, Jacob},
     title = {Almost optimal local well-posedness for the (3+1)-dimensional {Maxwell\^a€“Klein\^a€“Gordon} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {297--359},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00445-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/}
}
TY  - JOUR
AU  - Machedon, Matei
AU  - Sterbenz, Jacob
TI  - Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 297
EP  - 359
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/
DO  - 10.1090/S0894-0347-03-00445-4
ID  - 10_1090_S0894_0347_03_00445_4
ER  - 
%0 Journal Article
%A Machedon, Matei
%A Sterbenz, Jacob
%T Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations
%J Journal of the American Mathematical Society
%D 2004
%P 297-359
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/
%R 10.1090/S0894-0347-03-00445-4
%F 10_1090_S0894_0347_03_00445_4
Machedon, Matei; Sterbenz, Jacob. Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 297-359. doi: 10.1090/S0894-0347-03-00445-4

[1] Kantorovitch, L. The method of successive approximations for functional equations Acta Math. 1939 63 97

[2] Christodoulou, D., Klainerman, S. Asymptotic properties of linear field equations in Minkowski space Comm. Pure Appl. Math. 1990 137 199

[3] Cuccagna, Scipio On the local existence for the Maxwell-Klein-Gordon system in 𝑅³⁺¹ Comm. Partial Differential Equations 1999 851 867

[4] Eardley, Douglas M., Moncrief, Vincent The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191

[5] Eardley, Douglas M., Moncrief, Vincent The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191

[6] Foschi, Damiano, Klainerman, Sergiu Bilinear space-time estimates for homogeneous wave equations Ann. Sci. École Norm. Sup. (4) 2000 211 274

[7] Keel, Markus, Tao, Terence Endpoint Strichartz estimates Amer. J. Math. 1998 955 980

[8] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices Duke Math. J. 1993 1 21

[9] Klainerman, S., Machedon, M. On the Maxwell-Klein-Gordon equation with finite energy Duke Math. J. 1994 19 44

[10] Klainerman, S., Machedon, M. Smoothing estimates for null forms and applications Duke Math. J. 1995

[11] Klainerman, Sergiu, Machedon, Matei Estimates for null forms and the spaces 𝐻_{𝑠,𝛿} Internat. Math. Res. Notices 1996 853 865

[12] Klainerman, Sergiu, Machedon, Matei Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220

[13] Klainerman, Sergiu, Machedon, Matei On the optimal local regularity for gauge field theories Differential Integral Equations 1997 1019 1030

[14] Klainerman, Sergiu, Rodnianski, Igor On the global regularity of wave maps in the critical Sobolev norm Internat. Math. Res. Notices 2001 655 677

[15] Klainerman, Sergiu, Tataru, Daniel On the optimal local regularity for Yang-Mills equations in 𝑅⁴⁺¹ J. Amer. Math. Soc. 1999 93 116

[16] Lindblad, Hans A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations Duke Math. J. 1993 503 539

[17] Shu, Wei-Tong Global existence of Maxwell-Higgs fields 1992 214 227

[18] Tao, Terence Low regularity semi-linear wave equations Comm. Partial Differential Equations 1999 599 629

[19] Tao, Terence Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Internat. Math. Res. Notices 2001 299 328

[20] Tao, Terence Global regularity of wave maps. II. Small energy in two dimensions Comm. Math. Phys. 2001 443 544

[21] Tataru, Daniel Local and global results for wave maps. I Comm. Partial Differential Equations 1998 1781 1793

[22] Tataru, Daniel On the equation □𝑢 Math. Res. Lett. 1999 469 485

[23] Tataru, Daniel On global existence and scattering for the wave maps equation Amer. J. Math. 2001 37 77

Cité par Sources :