Voir la notice de l'article provenant de la source American Mathematical Society
Machedon, Matei 1 ; Sterbenz, Jacob 1, 2
@article{10_1090_S0894_0347_03_00445_4,
     author = {Machedon, Matei and Sterbenz, Jacob},
     title = {Almost optimal local well-posedness for the (3+1)-dimensional {Maxwell\^aKlein\^aGordon} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {297--359},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00445-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/}
}
                      
                      
                    TY - JOUR AU - Machedon, Matei AU - Sterbenz, Jacob TI - Almost optimal local well-posedness for the (3+1)-dimensional MaxwellâKleinâGordon equations JO - Journal of the American Mathematical Society PY - 2004 SP - 297 EP - 359 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/ DO - 10.1090/S0894-0347-03-00445-4 ID - 10_1090_S0894_0347_03_00445_4 ER -
%0 Journal Article %A Machedon, Matei %A Sterbenz, Jacob %T Almost optimal local well-posedness for the (3+1)-dimensional MaxwellâKleinâGordon equations %J Journal of the American Mathematical Society %D 2004 %P 297-359 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00445-4/ %R 10.1090/S0894-0347-03-00445-4 %F 10_1090_S0894_0347_03_00445_4
Machedon, Matei; Sterbenz, Jacob. Almost optimal local well-posedness for the (3+1)-dimensional MaxwellâKleinâGordon equations. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 297-359. doi: 10.1090/S0894-0347-03-00445-4
[1] The method of successive approximations for functional equations Acta Math. 1939 63 97
[2] , Asymptotic properties of linear field equations in Minkowski space Comm. Pure Appl. Math. 1990 137 199
[3] On the local existence for the Maxwell-Klein-Gordon system in ð ³âºÂ¹ Comm. Partial Differential Equations 1999 851 867
[4] , The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191
[5] , The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191
[6] , Bilinear space-time estimates for homogeneous wave equations Ann. Sci. Ãcole Norm. Sup. (4) 2000 211 274
[7] , Endpoint Strichartz estimates Amer. J. Math. 1998 955 980
[8] , , The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices Duke Math. J. 1993 1 21
[9] , On the Maxwell-Klein-Gordon equation with finite energy Duke Math. J. 1994 19 44
[10] , Smoothing estimates for null forms and applications Duke Math. J. 1995
[11] , Estimates for null forms and the spaces ð»_{ð ,ð¿} Internat. Math. Res. Notices 1996 853 865
[12] , Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220
[13] , On the optimal local regularity for gauge field theories Differential Integral Equations 1997 1019 1030
[14] , On the global regularity of wave maps in the critical Sobolev norm Internat. Math. Res. Notices 2001 655 677
[15] , On the optimal local regularity for Yang-Mills equations in ð â´âºÂ¹ J. Amer. Math. Soc. 1999 93 116
[16] A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations Duke Math. J. 1993 503 539
[17] Global existence of Maxwell-Higgs fields 1992 214 227
[18] Low regularity semi-linear wave equations Comm. Partial Differential Equations 1999 599 629
[19] Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Internat. Math. Res. Notices 2001 299 328
[20] Global regularity of wave maps. II. Small energy in two dimensions Comm. Math. Phys. 2001 443 544
[21] Local and global results for wave maps. I Comm. Partial Differential Equations 1998 1781 1793
[22] On the equation â¡ð¢ Math. Res. Lett. 1999 469 485
[23] On global existence and scattering for the wave maps equation Amer. J. Math. 2001 37 77
Cité par Sources :
