Wiener’s lemma for twisted convolution and Gabor frames
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 1-18

Voir la notice de l'article provenant de la source American Mathematical Society

We prove non-commutative versions of Wiener’s Lemma on absolutely convergent Fourier series (a) for the case of twisted convolution and (b) for rotation algebras. As an application we solve some open problems about Gabor frames, among them the problem of Feichtinger and Janssen that is known in the literature as the “irrational case”.
DOI : 10.1090/S0894-0347-03-00444-2

Gröchenig, Karlheinz 1 ; Leinert, Michael 2

1 Department of Mathematics, The University of Connecticut, Storrs, CT 06269-3009
2 Institut für Angewandte Mathematik, Fakultät für Mathematik, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
@article{10_1090_S0894_0347_03_00444_2,
     author = {Gr\~A{\textparagraph}chenig, Karlheinz and Leinert, Michael},
     title = {Wiener\^a€™s lemma for twisted convolution and {Gabor} frames},
     journal = {Journal of the American Mathematical Society},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00444-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00444-2/}
}
TY  - JOUR
AU  - Gröchenig, Karlheinz
AU  - Leinert, Michael
TI  - Wiener’s lemma for twisted convolution and Gabor frames
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 1
EP  - 18
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00444-2/
DO  - 10.1090/S0894-0347-03-00444-2
ID  - 10_1090_S0894_0347_03_00444_2
ER  - 
%0 Journal Article
%A Gröchenig, Karlheinz
%A Leinert, Michael
%T Wiener’s lemma for twisted convolution and Gabor frames
%J Journal of the American Mathematical Society
%D 2004
%P 1-18
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00444-2/
%R 10.1090/S0894-0347-03-00444-2
%F 10_1090_S0894_0347_03_00444_2
Gröchenig, Karlheinz; Leinert, Michael. Wiener’s lemma for twisted convolution and Gabor frames. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 1-18. doi: 10.1090/S0894-0347-03-00444-2

[1] Barnes, Bruce A. When is the spectrum of a convolution operator on 𝐿^{𝑝} independent of 𝑝? Proc. Edinburgh Math. Soc. (2) 1990 327 332

[2] Bã¶Lcskei, Helmut, Janssen, Augustus J. E. M. Gabor frames, unimodularity, and window decay J. Fourier Anal. Appl. 2000 255 276

[3] Daubechies, Ingrid The wavelet transform, time-frequency localization and signal analysis IEEE Trans. Inform. Theory 1990 961 1005

[4] Daubechies, Ingrid, Landau, H. J., Landau, Zeph Gabor time-frequency lattices and the Wexler-Raz identity J. Fourier Anal. Appl. 1995 437 478

[5] Davidson, Kenneth R. 𝐶*-algebras by example 1996

[6] Elliott, George A., Evans, David E. The structure of the irrational rotation 𝐶*-algebra Ann. of Math. (2) 1993 477 501

[7] Feichtinger, Hans G. On a new Segal algebra Monatsh. Math. 1981 269 289

[8] Feichtinger, Hans G., Grã¶Chenig, K. H. Banach spaces related to integrable group representations and their atomic decompositions. II Monatsh. Math. 1989 129 148

[9] Feichtinger, Hans G., Grã¶Chenig, K. Gabor frames and time-frequency analysis of distributions J. Funct. Anal. 1997 464 495

[10] Gabor analysis and algorithms 1998

[11] Folland, Gerald B. Harmonic analysis in phase space 1989

[12] Gelfand, I., Raikov, D., Shilov, G. Commutative normed rings 1964 306

[13] Grã¶Chenig, K. An uncertainty principle related to the Poisson summation formula Studia Math. 1996 87 104

[14] Grã¶Chenig, Karlheinz Foundations of time-frequency analysis 2001

[15] Howe, Roger On the role of the Heisenberg group in harmonic analysis Bull. Amer. Math. Soc. (N.S.) 1980 821 843

[16] Hulanicki, A. On the spectrum of convolution operators on groups with polynomial growth Invent. Math. 1972 135 142

[17] Janssen, A. J. E. M. Duality and biorthogonality for Weyl-Heisenberg frames J. Fourier Anal. Appl. 1995 403 436

[18] Leptin, H. The structure of 𝐿¹(𝐺) for locally compact groups 1984 48 61

[19] Losert, V. On the structure of groups with polynomial growth. II J. London Math. Soc. (2) 2001 640 654

[20] Ludwig, Jean A class of symmetric and a class of Wiener group algebras J. Functional Analysis 1979 187 194

[21] Naä­Mark, M. A. Normed algebras 1972

[22] Paterson, Alan L. T. Amenability 1988

[23] Pytlik, T. On the spectral radius of elements in group algebras Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1973 899 902

[24] Rickart, Charles E. General theory of Banach algebras 1960

[25] Rieffel, Marc A. von Neumann algebras associated with pairs of lattices in Lie groups Math. Ann. 1981 403 418

[26] Rieffel, Marc A. Projective modules over higher-dimensional noncommutative tori Canad. J. Math. 1988 257 338

[27] Ron, Amos, Shen, Zuowei Weyl-Heisenberg frames and Riesz bases in 𝐿₂(𝐑^{𝐝}) Duke Math. J. 1997 237 282

[28] Strohmer, Thomas Approximation of dual Gabor frames, window decay, and wireless communications Appl. Comput. Harmon. Anal. 2001 243 262

[29] Tolimieri, Richard, Orr, Richard S. Poisson summation, the ambiguity function, and the theory of Weyl-Heisenberg frames J. Fourier Anal. Appl. 1995 233 247

[30] Walnut, David F. Continuity properties of the Gabor frame operator J. Math. Anal. Appl. 1992 479 504

[31] Zibulski, Meir, Zeevi, Yehoshua Y. Analysis of multiwindow Gabor-type schemes by frame methods Appl. Comput. Harmon. Anal. 1997 188 221

Cité par Sources :