Almost global existence for quasilinear wave equations in three space dimensions
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 109-153

Voir la notice de l'article provenant de la source American Mathematical Society

We prove almost global existence for multiple speed quasilinear wave equations with quadratic nonlinearities in three spatial dimensions. We prove new results both for Minkowski space and also for nonlinear Dirichlet-wave equations outside of star shaped obstacles. The results for Minkowski space generalize a classical theorem of John and Klainerman. Our techniques only use the classical invariance of the wave operator under translations, spatial rotations, and scaling. We exploit the $O(|x|^{-1})$ decay of solutions of the wave equation as much as the $O(|t|^{-1})$ decay. Accordingly, a key step in our approach is to prove a pointwise estimate of solutions of the wave equation that gives $O(1/t)$ decay of solutions of the inhomogeneous linear wave equation in terms of a $O(1/|x|)$-weighted norm on the forcing term. A weighted $L^{2}$ space-time estimate for inhomogeneous wave equations is also important in making the spatial decay useful for the long-term existence argument.
DOI : 10.1090/S0894-0347-03-00443-0

Keel, Markus 1 ; Smith, Hart 2 ; Sogge, Christopher 3

1 Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
2 Department of Mathematics, University of Washington, Seattle, Washington 98195
3 Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218
@article{10_1090_S0894_0347_03_00443_0,
     author = {Keel, Markus and Smith, Hart and Sogge, Christopher},
     title = {Almost global existence for quasilinear wave equations in three space dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {109--153},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00443-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00443-0/}
}
TY  - JOUR
AU  - Keel, Markus
AU  - Smith, Hart
AU  - Sogge, Christopher
TI  - Almost global existence for quasilinear wave equations in three space dimensions
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 109
EP  - 153
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00443-0/
DO  - 10.1090/S0894-0347-03-00443-0
ID  - 10_1090_S0894_0347_03_00443_0
ER  - 
%0 Journal Article
%A Keel, Markus
%A Smith, Hart
%A Sogge, Christopher
%T Almost global existence for quasilinear wave equations in three space dimensions
%J Journal of the American Mathematical Society
%D 2004
%P 109-153
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00443-0/
%R 10.1090/S0894-0347-03-00443-0
%F 10_1090_S0894_0347_03_00443_0
Keel, Markus; Smith, Hart; Sogge, Christopher. Almost global existence for quasilinear wave equations in three space dimensions. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 109-153. doi: 10.1090/S0894-0347-03-00443-0

[1] Christodoulou, Demetrios Global solutions of nonlinear hyperbolic equations for small initial data Comm. Pure Appl. Math. 1986 267 282

[2] Datti, P. S. Nonlinear wave equations in exterior domains Nonlinear Anal. 1990 321 331

[3] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[4] Godin, Paul Global existence of solutions to some exterior radial quasilinear Cauchy-Dirichlet problems Amer. J. Math. 1995 1475 1505

[5] Hayashi, Nakao Global existence of small solutions to quadratic nonlinear wave equations in an exterior domain J. Funct. Anal. 1995 302 344

[6] Hã¶Rmander, Lars Lectures on nonlinear hyperbolic differential equations 1997

[7] Hã¶Rmander, Lars 𝐿¹,𝐿^{∞} estimates for the wave operator 1988 211 234

[8] John, Fritz Nonlinear wave equations, formation of singularities 1990

[9] John, F., Klainerman, S. Almost global existence to nonlinear wave equations in three space dimensions Comm. Pure Appl. Math. 1984 443 455

[10] Keel, Markus, Smith, Hart F., Sogge, Christopher D. Global existence for a quasilinear wave equation outside of star-shaped domains J. Funct. Anal. 2002 155 226

[11] Klainerman, Sergiu Uniform decay estimates and the Lorentz invariance of the classical wave equation Comm. Pure Appl. Math. 1985 321 332

[12] Klainerman, S. The null condition and global existence to nonlinear wave equations 1986 293 326

[13] Klainerman, Sergiu, Sideris, Thomas C. On almost global existence for nonrelativistic wave equations in 3D Comm. Pure Appl. Math. 1996 307 321

[14] Kovalyov, Mikhail Long-time behaviour of solutions of a system of nonlinear wave equations Comm. Partial Differential Equations 1987 471 501

[15] Lax, P. D., Morawetz, C. S., Phillips, R. S. Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle Comm. Pure Appl. Math. 1963 477 486

[16] Lax, Peter D., Phillips, Ralph S. Scattering theory 1989

[17] Morawetz, Cathleen S. The decay of solutions of the exterior initial-boundary value problem for the wave equation Comm. Pure Appl. Math. 1961 561 568

[18] Morawetz, Cathleen S. Time decay for the nonlinear Klein-Gordon equations Proc. Roy. Soc. London Ser. A 1968 291 296

[19] Morawetz, Cathleen S., Strauss, Walter A. Decay and scattering of solutions of a nonlinear relativistic wave equation Comm. Pure Appl. Math. 1972 1 31

[20] Morawetz, Cathleen S., Ralston, James V., Strauss, Walter A. Decay of solutions of the wave equation outside nontrapping obstacles Comm. Pure Appl. Math. 1977 447 508

[21] Sideris, Thomas C. Nonresonance and global existence of prestressed nonlinear elastic waves Ann. of Math. (2) 2000 849 874

[22] Sideris, Thomas C. The null condition and global existence of nonlinear elastic waves Invent. Math. 1996 323 342

[23] Sideris, Thomas C., Tu, Shu-Yi Global existence for systems of nonlinear wave equations in 3D with multiple speeds SIAM J. Math. Anal. 2001 477 488

[24] Smith, Hart F., Sogge, Christopher D. Global Strichartz estimates for nontrapping perturbations of the Laplacian Comm. Partial Differential Equations 2000 2171 2183

[25] Sogge, Christopher D. Lectures on nonlinear wave equations 1995

[26] Shibata, Yoshihiro, Tsutsumi, Yoshio On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain Math. Z. 1986 165 199

[27] Yokoyama, Kazuyoshi Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions J. Math. Soc. Japan 2000 609 632

Cité par Sources :