Voir la notice de l'article provenant de la source American Mathematical Society
Knutson, Allen 1 ; Tao, Terence 2 ; Woodward, Christopher 3
@article{10_1090_S0894_0347_03_00441_7,
author = {Knutson, Allen and Tao, Terence and Woodward, Christopher},
title = {The honeycomb model of {\dh}{\textordmasculine}{\dh}{\textquestiondown}_{{\dh}}(\^a) tensor products {II:} {Puzzles} determine facets of the {Littlewood-Richardson} cone},
journal = {Journal of the American Mathematical Society},
pages = {19--48},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2004},
doi = {10.1090/S0894-0347-03-00441-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00441-7/}
}
TY - JOUR
AU - Knutson, Allen
AU - Tao, Terence
AU - Woodward, Christopher
TI - The honeycomb model of ðºð¿_{ð}(â) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone
JO - Journal of the American Mathematical Society
PY - 2004
SP - 19
EP - 48
VL - 17
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00441-7/
DO - 10.1090/S0894-0347-03-00441-7
ID - 10_1090_S0894_0347_03_00441_7
ER -
%0 Journal Article
%A Knutson, Allen
%A Tao, Terence
%A Woodward, Christopher
%T The honeycomb model of ðºð¿_{ð}(â) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone
%J Journal of the American Mathematical Society
%D 2004
%P 19-48
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00441-7/
%R 10.1090/S0894-0347-03-00441-7
%F 10_1090_S0894_0347_03_00441_7
Knutson, Allen; Tao, Terence; Woodward, Christopher. The honeycomb model of ðºð¿_{ð}(â) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 19-48. doi: 10.1090/S0894-0347-03-00441-7
[1] Local systems on â¹-ð for ð a finite set Compositio Math. 2001 67 86
[2] Eigenvalues, invariant factors, highest weights, and Schubert calculus Bull. Amer. Math. Soc. (N.S.) 2000 209 249
[3] Young tableaux 1997
[4] , Littlewood-Richardson coefficients via Yang-Baxter equation Internat. Math. Res. Notices 2000 741 774
[5] , Eigenvalue inequalities and Schubert calculus Math. Nachr. 1995 207 225
[6] Eigenvalues of sums of Hermitian matrices Pacific J. Math. 1962 225 241
[7] , The honeycomb model of ðºð¿_{ð}(ð¶) tensor products. I. Proof of the saturation conjecture J. Amer. Math. Soc. 1999 1055 1090
[8] The symplectic and algebraic geometry of Hornâs problem Linear Algebra Appl. 2000 61 81
[9] , , Geometric invariant theory 1994
[10] Tensor products of semistables are semistable 1994 242 250
Cité par Sources :