Cusps and 𝒟-modules
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 155-179

Voir la notice de l'article provenant de la source American Mathematical Society

We study interactions between the categories of $\mathcal {D}$-modules on smooth and singular varieties. For a large class of singular varieties $Y$, we use an extension of the Grothendieck-Sato formula to show that $\mathcal {D}_Y$-modules are equivalent to stratifications on $Y$, and as a consequence are unaffected by a class of homeomorphisms, the cuspidal quotients. In particular, when $Y$ has a smooth bijective normalization $X$, we obtain a Morita equivalence of $\mathcal {D}_Y$ and $\mathcal {D}_X$ and a Kashiwara theorem for $\mathcal {D}_Y$, thereby solving conjectures of Hart-Smith and Berest-Etingof-Ginzburg (generalizing results for complex curves and surfaces and rational Cherednik algebras). We also use this equivalence to enlarge the category of induced $\mathcal {D}$-modules on a smooth variety $X$ by collecting induced $\mathcal {D}_X$-modules on varying cuspidal quotients. The resulting cusp-induced $\mathcal {D}_X$-modules possess both the good properties of induced $\mathcal {D}$-modules (in particular, a Riemann-Hilbert description) and, when $X$ is a curve, a simple characterization as the generically torsion-free $\mathcal {D}_X$-modules.
DOI : 10.1090/S0894-0347-03-00439-9

Ben-Zvi, David 1, 2 ; Nevins, Thomas 3

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
2 Department of Mathematics, University of Texas, Austin, Texas 78712-0257
3 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
@article{10_1090_S0894_0347_03_00439_9,
     author = {Ben-Zvi, David and Nevins, Thomas},
     title = {Cusps and {\dh}’Ÿ-modules},
     journal = {Journal of the American Mathematical Society},
     pages = {155--179},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00439-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/}
}
TY  - JOUR
AU  - Ben-Zvi, David
AU  - Nevins, Thomas
TI  - Cusps and 𝒟-modules
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 155
EP  - 179
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/
DO  - 10.1090/S0894-0347-03-00439-9
ID  - 10_1090_S0894_0347_03_00439_9
ER  - 
%0 Journal Article
%A Ben-Zvi, David
%A Nevins, Thomas
%T Cusps and 𝒟-modules
%J Journal of the American Mathematical Society
%D 2004
%P 155-179
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/
%R 10.1090/S0894-0347-03-00439-9
%F 10_1090_S0894_0347_03_00439_9
Ben-Zvi, David; Nevins, Thomas. Cusps and 𝒟-modules. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 155-179. doi: 10.1090/S0894-0347-03-00439-9

[1] Airault, H., Mckean, H. P., Moser, J. Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem Comm. Pure Appl. Math. 1977 95 148

[2] Artin, M., Mazur, B. Etale homotopy 1969

[3] Beä­Linson, A., Bernstein, J. A proof of Jantzen conjectures 1993 1 50

[4] Beä­Linson, A. A., Schechtman, V. V. Determinant bundles and Virasoro algebras Comm. Math. Phys. 1988 651 701

[5] Berest, Yuri, Wilson, George Automorphisms and ideals of the Weyl algebra Math. Ann. 2000 127 147

[6] Berest, Yuri, Wilson, George Ideal classes of the Weyl algebra and noncommutative projective geometry Int. Math. Res. Not. 2002 1347 1396

[7] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Differential operators on a cubic cone Uspehi Mat. Nauk 1972 185 190

[8] Berthelot, Pierre Cohomologie cristalline des schémas de caractéristique 𝑝>0 1974 604

[9] Berthelot, Pierre 𝒟-modules arithmétiques. I. Opérateurs différentiels de niveau fini Ann. Sci. École Norm. Sup. (4) 1996 185 272

[10] Berthelot, Pierre 𝒟-modules arithmétiques. II. Descente par Frobenius Mém. Soc. Math. Fr. (N.S.) 2000

[11] Cannings, R. C., Holland, M. P. Right ideals of rings of differential operators J. Algebra 1994 116 141

[12] Cannings, Rob C., Holland, Martin P. Limits of compactified Jacobians and 𝒟-modules on smooth projective curves Adv. Math. 1998 287 302

[13] Chamarie, M., Stafford, J. T. When rings of differential operators are maximal orders Math. Proc. Cambridge Philos. Soc. 1987 399 410

[14] Conrad, Brian Grothendieck duality and base change 2000

[15] Deligne, P. Catégories tannakiennes 1990 111 195

[16] Van Doorn, M. G. M., Van Den Essen, A. R. P. 𝒟_{𝓃}-modules with support on a curve Publ. Res. Inst. Math. Sci. 1987 937 953

[17] Eisenbud, David Commutative algebra 1995

[18] Etingof, Pavel, Ginzburg, Victor Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism Invent. Math. 2002 243 348

[19] Scherk, Peter Bemerkungen zu einer Note von Besicovitch J. London Math. Soc. 1939 185 192

[20] Grothendieck, A. Crystals and the de Rham cohomology of schemes 1968 306 358

[21] Hart, R., Smith, S. P. Differential operators on some singular surfaces Bull. London Math. Soc. 1987 145 148

[22] Hartshorne, Robin Residues and duality 1966

[23] Hartshorne, Robin Local cohomology 1967

[24] Hartshorne, Robin Cohomological dimension of algebraic varieties Ann. of Math. (2) 1968 403 450

[25] Cohomologie 𝑙-adique et fonctions 𝐿 1977

[26] Jones, A. G. Some Morita equivalences of rings of differential operators J. Algebra 1995 180 199

[27] Krichever, Igor Moiseevich Rational solutions of the Kadomcev-Petviašvili equation and the integrable systems of 𝑁 particles on a line Funkcional. Anal. i Priložen. 1978 76 78

[28] Krichever, Igor Moiseevich Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles Funktsional. Anal. i Prilozhen. 1980

[29] Musson, Ian M. Some rings of differential operators which are Morita equivalent to the Weyl algebra 𝐴₁ Proc. Amer. Math. Soc. 1986 29 30

[30] Saito, Morihiko Induced 𝒟-modules and differential complexes Bull. Soc. Math. France 1989 361 387

[31] Shiota, Takahiro Calogero-Moser hierarchy and KP hierarchy J. Math. Phys. 1994 5844 5849

[32] Smith, S. P. An example of a ring Morita equivalent to the Weyl algebra 𝐴₁ J. Algebra 1981 552 555

[33] Smith, S. P., Stafford, J. T. Differential operators on an affine curve Proc. London Math. Soc. (3) 1988 229 259

[34] Wilson, George Collisions of Calogero-Moser particles and an adelic Grassmannian Invent. Math. 1998 1 41

Cité par Sources :