Voir la notice de l'article provenant de la source American Mathematical Society
Ben-Zvi, David 1, 2 ; Nevins, Thomas 3
@article{10_1090_S0894_0347_03_00439_9,
     author = {Ben-Zvi, David and Nevins, Thomas},
     title = {Cusps and {\dh}-modules},
     journal = {Journal of the American Mathematical Society},
     pages = {155--179},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00439-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/}
}
                      
                      
                    TY - JOUR AU - Ben-Zvi, David AU - Nevins, Thomas TI - Cusps and ð-modules JO - Journal of the American Mathematical Society PY - 2004 SP - 155 EP - 179 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/ DO - 10.1090/S0894-0347-03-00439-9 ID - 10_1090_S0894_0347_03_00439_9 ER -
%0 Journal Article %A Ben-Zvi, David %A Nevins, Thomas %T Cusps and ð-modules %J Journal of the American Mathematical Society %D 2004 %P 155-179 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00439-9/ %R 10.1090/S0894-0347-03-00439-9 %F 10_1090_S0894_0347_03_00439_9
Ben-Zvi, David; Nevins, Thomas. Cusps and ð-modules. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 155-179. doi: 10.1090/S0894-0347-03-00439-9
[1] , , Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem Comm. Pure Appl. Math. 1977 95 148
[2] , Etale homotopy 1969
[3] , A proof of Jantzen conjectures 1993 1 50
[4] , Determinant bundles and Virasoro algebras Comm. Math. Phys. 1988 651 701
[5] , Automorphisms and ideals of the Weyl algebra Math. Ann. 2000 127 147
[6] , Ideal classes of the Weyl algebra and noncommutative projective geometry Int. Math. Res. Not. 2002 1347 1396
[7] , , Differential operators on a cubic cone Uspehi Mat. Nauk 1972 185 190
[8] Cohomologie cristalline des schémas de caractéristique ð>0 1974 604
[9] ð-modules arithmétiques. I. Opérateurs différentiels de niveau fini Ann. Sci. Ãcole Norm. Sup. (4) 1996 185 272
[10] ð-modules arithmétiques. II. Descente par Frobenius Mém. Soc. Math. Fr. (N.S.) 2000
[11] , Right ideals of rings of differential operators J. Algebra 1994 116 141
[12] , Limits of compactified Jacobians and ð-modules on smooth projective curves Adv. Math. 1998 287 302
[13] , When rings of differential operators are maximal orders Math. Proc. Cambridge Philos. Soc. 1987 399 410
[14] Grothendieck duality and base change 2000
[15] Catégories tannakiennes 1990 111 195
[16] , ð_{ð}-modules with support on a curve Publ. Res. Inst. Math. Sci. 1987 937 953
[17] Commutative algebra 1995
[18] , Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism Invent. Math. 2002 243 348
[19] Bemerkungen zu einer Note von Besicovitch J. London Math. Soc. 1939 185 192
[20] Crystals and the de Rham cohomology of schemes 1968 306 358
[21] , Differential operators on some singular surfaces Bull. London Math. Soc. 1987 145 148
[22] Residues and duality 1966
[23] Local cohomology 1967
[24] Cohomological dimension of algebraic varieties Ann. of Math. (2) 1968 403 450
[25] Cohomologie ð-adique et fonctions ð¿ 1977
[26] Some Morita equivalences of rings of differential operators J. Algebra 1995 180 199
[27] Rational solutions of the Kadomcev-PetviaÅ¡vili equation and the integrable systems of ð particles on a line Funkcional. Anal. i Priložen. 1978 76 78
[28] Elliptic solutions of the Kadomcev-Petviašvili equations, and integrable systems of particles Funktsional. Anal. i Prilozhen. 1980
[29] Some rings of differential operators which are Morita equivalent to the Weyl algebra ð´â Proc. Amer. Math. Soc. 1986 29 30
[30] Induced ð-modules and differential complexes Bull. Soc. Math. France 1989 361 387
[31] Calogero-Moser hierarchy and KP hierarchy J. Math. Phys. 1994 5844 5849
[32] An example of a ring Morita equivalent to the Weyl algebra ð´â J. Algebra 1981 552 555
[33] , Differential operators on an affine curve Proc. London Math. Soc. (3) 1988 229 259
[34] Collisions of Calogero-Moser particles and an adelic Grassmannian Invent. Math. 1998 1 41
Cité par Sources :
