Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 229-242

Voir la notice de l'article provenant de la source American Mathematical Society

Sigma-delta quantization is a method of representing bandlimited signals by $0{-}1$ sequences that are computed from regularly spaced samples of these signals; as the sampling density $\lambda \to \infty$, convolving these one-bit sequences with appropriately chosen kernels produces increasingly close approximations of the original signals. This method is widely used for analog-to-digital and digital-to-analog conversion, because it is less expensive and simpler to implement than the more familiar critical sampling followed by fine-resolution quantization. We present examples of how tools from number theory and harmonic analysis are employed in sharpening the error estimates in sigma-delta quantization.
DOI : 10.1090/S0894-0347-03-00436-3

Güntürk, C. 1

1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
@article{10_1090_S0894_0347_03_00436_3,
     author = {G\~A{\textonequarter}nt\~A{\textonequarter}rk, C.},
     title = {Approximating a bandlimited function using very coarsely quantized data: {Improved} error estimates in sigma-delta modulation},
     journal = {Journal of the American Mathematical Society},
     pages = {229--242},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00436-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00436-3/}
}
TY  - JOUR
AU  - Güntürk, C.
TI  - Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 229
EP  - 242
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00436-3/
DO  - 10.1090/S0894-0347-03-00436-3
ID  - 10_1090_S0894_0347_03_00436_3
ER  - 
%0 Journal Article
%A Güntürk, C.
%T Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation
%J Journal of the American Mathematical Society
%D 2004
%P 229-242
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00436-3/
%R 10.1090/S0894-0347-03-00436-3
%F 10_1090_S0894_0347_03_00436_3
Güntürk, C. Approximating a bandlimited function using very coarsely quantized data: Improved error estimates in sigma-delta modulation. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 229-242. doi: 10.1090/S0894-0347-03-00436-3

[1] Kuipers, L., Niederreiter, H. Uniform distribution of sequences 1974

[2] Wavelets 1992

[3] Montgomery, Hugh L. Ten lectures on the interface between analytic number theory and harmonic analysis 1994

[4] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

Cité par Sources :