The homotopy theory of fusion systems
Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 779-856

Voir la notice de l'article provenant de la source American Mathematical Society

We define and characterize a class of $p$-complete spaces $X$ which have many of the same properties as the $p$-completions of classifying spaces of finite groups. For example, each such $X$ has a Sylow subgroup $BS\longrightarrow X$, maps $BQ\longrightarrow X$ for a $p$-group $Q$ are described via homomorphisms $Q\longrightarrow S$, and $H^*(X;\mathbb {F}_p)$ is isomorphic to a certain ring of “stable elements” in $H^*(BS;\mathbb {F}_p)$. These spaces arise as the “classifying spaces” of certain algebraic objects which we call “$p$-local finite groups”. Such an object consists of a system of fusion data in $S$, as formalized by L. Puig, extended by some extra information carried in a category which allows rigidification of the fusion data.
DOI : 10.1090/S0894-0347-03-00434-X

Broto, Carles 1 ; Levi, Ran 2 ; Oliver, Bob 3

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, E–08193 Bellaterra, Spain
2 Department of Mathematical Sciences, University of Aberdeen, Meston Building 339, Aberdeen AB24 3UE, United Kingdom
3 LAGA, Institut Galilée, Av. J-B Clément, 93430 Villetaneuse, France
@article{10_1090_S0894_0347_03_00434_X,
     author = {Broto, Carles and Levi, Ran and Oliver, Bob},
     title = {The homotopy theory of fusion systems},
     journal = {Journal of the American Mathematical Society},
     pages = {779--856},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00434-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00434-X/}
}
TY  - JOUR
AU  - Broto, Carles
AU  - Levi, Ran
AU  - Oliver, Bob
TI  - The homotopy theory of fusion systems
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 779
EP  - 856
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00434-X/
DO  - 10.1090/S0894-0347-03-00434-X
ID  - 10_1090_S0894_0347_03_00434_X
ER  - 
%0 Journal Article
%A Broto, Carles
%A Levi, Ran
%A Oliver, Bob
%T The homotopy theory of fusion systems
%J Journal of the American Mathematical Society
%D 2003
%P 779-856
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00434-X/
%R 10.1090/S0894-0347-03-00434-X
%F 10_1090_S0894_0347_03_00434_X
Broto, Carles; Levi, Ran; Oliver, Bob. The homotopy theory of fusion systems. Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 779-856. doi: 10.1090/S0894-0347-03-00434-X

[1] Alperin, J. L. Local representation theory 1986

[2] Alperin, J., Brouã©, Michel Local methods in block theory Ann. of Math. (2) 1979 143 157

[3] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[4] Atiyah, M. F., Macdonald, I. G. Introduction to commutative algebra 1969

[5] Benson, David J. Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants 1998 10 23

[6] Bousfield, A. K., Kan, D. M. Homotopy limits, completions and localizations 1972

[7] Bredon, Glen E. Sheaf theory 1967

[8] Broto, Carles, Levi, Ran On spaces of self-homotopy equivalences of 𝑝-completed classifying spaces of finite groups and homotopy group extensions Topology 2002 229 255

[9] Brown, Kenneth S. Cohomology of groups 1982

[10] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985

[11] Dwyer, W. G. The centralizer decomposition of 𝐵𝐺 1996 167 184

[12] Dwyer, W. G., Kan, D. M. A classification theorem for diagrams of simplicial sets Topology 1984 139 155

[13] Dwyer, W. G., Kan, D. M. Centric maps and realization of diagrams in the homotopy category Proc. Amer. Math. Soc. 1992 575 584

[14] Dwyer, W. G., Wilkerson, C. W. A cohomology decomposition theorem Topology 1992 433 443

[15] Evens, Leonard, Priddy, Stewart The ring of universally stable elements Quart. J. Math. Oxford Ser. (2) 1989 399 407

[16] Gabriel, P., Zisman, M. Calculus of fractions and homotopy theory 1967

[17] Goerss, Paul G., Jardine, John F. Simplicial homotopy theory 1999

[18] Gorenstein, Daniel Finite groups 1968

[19] Gorenstein, Daniel, Lyons, Richard The local structure of finite groups of characteristic 2 type Mem. Amer. Math. Soc. 1983

[20] Gorenstein, Daniel, Lyons, Richard, Solomon, Ronald The classification of the finite simple groups. Number 3. Part I. Chapter A 1998

[21] Grodal, Jesper Higher limits via subgroup complexes Ann. of Math. (2) 2002 405 457

[22] Hoff, Georges Cohomologies et extensions de categories Math. Scand. 1994 191 207

[23] Hollender, J., Vogt, R. M. Modules of topological spaces, applications to homotopy limits and 𝐸_{∞} structures Arch. Math. (Basel) 1992 115 129

[24] Jackowski, Stefan, Mcclure, James Homotopy decomposition of classifying spaces via elementary abelian subgroups Topology 1992 113 132

[25] Jackowski, Stefan, Mcclure, James, Oliver, Bob Homotopy classification of self-maps of 𝐵𝐺 via 𝐺-actions. I Ann. of Math. (2) 1992 183 226

[26] Algebraic topology and its applications 1994

[27] Lannes, Jean Sur les espaces fonctionnels dont la source est le classifiant d’un 𝑝-groupe abélien élémentaire Inst. Hautes Études Sci. Publ. Math. 1992 135 244

[28] Lannes, Jean, Schwartz, Lionel Sur la structure des 𝐴-modules instables injectifs Topology 1989 153 169

[29] Liebeck, Martin W., Saxl, Jan, Seitz, Gary M. Subgroups of maximal rank in finite exceptional groups of Lie type Proc. London Math. Soc. (3) 1992 297 325

[30] Oliver, Bob Higher limits via Steinberg representations Comm. Algebra 1994 1381 1393

[31] Quillen, Daniel The spectrum of an equivariant cohomology ring. I, II Ann. of Math. (2) 1971

[32] Quillen, Daniel Higher algebraic 𝐾-theory. I 1973 85 147

[33] Segal, Graeme Categories and cohomology theories Topology 1974 293 312

[34] Solomon, Ronald Finite groups with Sylow 2-subgroups of type 3 J. Algebra 1974 182 198

[35] Swan, Richard G. The nontriviality of the restriction map in the cohomology of groups Proc. Amer. Math. Soc. 1960 885 887

Cité par Sources :