The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 495-535

Voir la notice de l'article provenant de la source American Mathematical Society

We present a coarse interpretation of the Weil-Petersson distance $d_{\mathrm {WP}}(X,Y)$ between two finite area hyperbolic Riemann surfaces $X$ and $Y$ using a graph of pants decompositions introduced by Hatcher and Thurston. The combinatorics of the pants graph reveal a connection between Riemann surfaces and hyperbolic 3-manifolds conjectured by Thurston: the volume of the convex core of the quasi-Fuchsian manifold $Q(X,Y)$ with $X$ and $Y$ in its conformal boundary is comparable to the Weil-Petersson distance $d_{\mathrm {WP}}(X,Y)$. In applications, we relate the Weil-Petersson distance to the Hausdorff dimension of the limit set and the lowest eigenvalue of the Laplacian for $Q(X,Y)$, and give a new finiteness criterion for geometric limits.
DOI : 10.1090/S0894-0347-03-00424-7

Brock, Jeffrey 1

1 Mathematics Department, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
@article{10_1090_S0894_0347_03_00424_7,
     author = {Brock, Jeffrey},
     title = {The {Weil-Petersson} metric and volumes of 3-dimensional hyperbolic convex cores},
     journal = {Journal of the American Mathematical Society},
     pages = {495--535},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00424-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00424-7/}
}
TY  - JOUR
AU  - Brock, Jeffrey
TI  - The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 495
EP  - 535
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00424-7/
DO  - 10.1090/S0894-0347-03-00424-7
ID  - 10_1090_S0894_0347_03_00424_7
ER  - 
%0 Journal Article
%A Brock, Jeffrey
%T The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores
%J Journal of the American Mathematical Society
%D 2003
%P 495-535
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00424-7/
%R 10.1090/S0894-0347-03-00424-7
%F 10_1090_S0894_0347_03_00424_7
Brock, Jeffrey. The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 495-535. doi: 10.1090/S0894-0347-03-00424-7

[1] Benedetti, Riccardo, Petronio, Carlo Lectures on hyperbolic geometry 1992

[2] Bers, Lipman Simultaneous uniformization Bull. Amer. Math. Soc. 1960 94 97

[3] Bers, Lipman On boundaries of Teichmüller spaces and on Kleinian groups. I Ann. of Math. (2) 1970 570 600

[4] Bers, Lipman Spaces of degenerating Riemann surfaces 1974 43 55

[5] Bonahon, Francis Bouts des variétés hyperboliques de dimension 3 Ann. of Math. (2) 1986 71 158

[6] Bowen, Rufus Hausdorff dimension of quasicircles Inst. Hautes Études Sci. Publ. Math. 1979 11 25

[7] Brock, J. F. Continuity of Thurston’s length function Geom. Funct. Anal. 2000 741 797

[8] Brock, Jeffrey F. Iteration of mapping classes and limits of hyperbolic 3-manifolds Invent. Math. 2001 523 570

[9] Burger, Marc, Canary, Richard D. A lower bound on 𝜆₀ for geometrically finite hyperbolic 𝑛-manifolds J. Reine Angew. Math. 1994 37 57

[10] Buser, Peter Geometry and spectra of compact Riemann surfaces 1992

[11] Canary, Richard D. On the Laplacian and the geometry of hyperbolic 3-manifolds J. Differential Geom. 1992 349 367

[12] Canary, Richard D. Ends of hyperbolic 3-manifolds J. Amer. Math. Soc. 1993 1 35

[13] Canary, Richard D. A covering theorem for hyperbolic 3-manifolds and its applications Topology 1996 751 778

[14] Canary, Richard D., Minsky, Yair N. On limits of tame hyperbolic 3-manifolds J. Differential Geom. 1996 1 41

[15] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[16] Gardiner, Frederick P. Teichmüller theory and quadratic differentials 1987

[17] Harvey, W. J. Boundary structure of the modular group 1981 245 251

[18] Hatcher, Allen On triangulations of surfaces Topology Appl. 1991 189 194

[19] Hatcher, Allen, Lochak, Pierre, Schneps, Leila On the Teichmüller tower of mapping class groups J. Reine Angew. Math. 2000 1 24

[20] Hatcher, A., Thurston, W. A presentation for the mapping class group of a closed orientable surface Topology 1980 221 237

[21] Imayoshi, Y., Taniguchi, M. An introduction to Teichmüller spaces 1992

[22] Masur, Howard Extension of the Weil-Petersson metric to the boundary of Teichmuller space Duke Math. J. 1976 623 635

[23] Masur, Howard A., Minsky, Yair N. Geometry of the complex of curves. I. Hyperbolicity Invent. Math. 1999 103 149

[24] Masur, H. A., Minsky, Y. N. Geometry of the complex of curves. II. Hierarchical structure Geom. Funct. Anal. 2000 902 974

[25] Mcmullen, C. Iteration on Teichmüller space Invent. Math. 1990 425 454

[26] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[27] Mcmullen, Curtis T. Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups J. Differential Geom. 1999 471 515

[28] Minsky, Yair N. The classification of punctured-torus groups Ann. of Math. (2) 1999 559 626

[29] Otal, Jean-Pierre Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3 Astérisque 1996

[30] Sullivan, Dennis Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur 𝑆¹ 1981 196 214

[31] Sullivan, Dennis Related aspects of positivity in Riemannian geometry J. Differential Geom. 1987 327 351

[32] Taylor, Edward C. Geometric finiteness and the convergence of Kleinian groups Comm. Anal. Geom. 1997 497 533

[33] Thurston, William P. Hyperbolic structures on 3-manifolds. I. Deformation of acylindrical manifolds Ann. of Math. (2) 1986 203 246

[34] Tromba, A. J. On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric Manuscripta Math. 1986 475 497

[35] Wolpert, Scott Noncompleteness of the Weil-Petersson metric for Teichmüller space Pacific J. Math. 1975 573 577

[36] Wolpert, Scott A. Chern forms and the Riemann tensor for the moduli space of curves Invent. Math. 1986 119 145

[37] Wolpert, Scott A. Geodesic length functions and the Nielsen problem J. Differential Geom. 1987 275 296

[38] Wolpert, Scott A. The hyperbolic metric and the geometry of the universal curve J. Differential Geom. 1990 417 472

Cité par Sources :