Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_02_00409_5,
author = {Thomas, Simon},
title = {The classification problem for torsion-free abelian groups of finite rank},
journal = {Journal of the American Mathematical Society},
pages = {233--258},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2003},
doi = {10.1090/S0894-0347-02-00409-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/}
}
TY - JOUR AU - Thomas, Simon TI - The classification problem for torsion-free abelian groups of finite rank JO - Journal of the American Mathematical Society PY - 2003 SP - 233 EP - 258 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/ DO - 10.1090/S0894-0347-02-00409-5 ID - 10_1090_S0894_0347_02_00409_5 ER -
%0 Journal Article %A Thomas, Simon %T The classification problem for torsion-free abelian groups of finite rank %J Journal of the American Mathematical Society %D 2003 %P 233-258 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/ %R 10.1090/S0894-0347-02-00409-5 %F 10_1090_S0894_0347_02_00409_5
Thomas, Simon. The classification problem for torsion-free abelian groups of finite rank. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 233-258. doi: 10.1090/S0894-0347-02-00409-5
[1] Trees and amenable equivalence relations Ergodic Theory Dynam. Systems 1990 1 14
[2] , Linear algebraic groups and countable Borel equivalence relations J. Amer. Math. Soc. 2000 909 943
[3] Finite rank torsion free abelian groups and rings 1982
[4] Linear algebraic groups 1991
[5] Every countable reduced torsion-free ring is an endomorphism ring Proc. London Math. Soc. (3) 1963 687 710
[6] , Representation theory of finite groups and associative algebras 1962
[7] , , The structure of hyperfinite Borel equivalence relations Trans. Amer. Math. Soc. 1994 193 225
[8] , Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324
[9] , A Borel reducibility theory for classes of countable structures J. Symbolic Logic 1989 894 914
[10] Infinite abelian groups. Vol. I 1970
[11] , , A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928
[12] Around nonclassifiability for countable torsion free abelian groups 1999 269 292
[13] , Borel equivalence relations and classifications of countable models Ann. Pure Appl. Logic 1996 221 272
[14] On direct decomposition of torsion free Abelian groups Math. Scand. 1959 361 371
[15] Countable sections for locally compact group actions Ergodic Theory Dynam. Systems 1992 283 295
[16] Amenable versus hyperfinite Borel equivalence relations J. Symbolic Logic 1993 894 907
[17] Classical descriptive set theory 1995
[18] On the classification problem for rank 2 torsion-free abelian groups J. London Math. Soc. (2) 2000 437 450
[19] The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two Dissertationes Math. (Rozprawy Mat.) 1967 76
[20] Ãber die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen Math. Z. 1939 429 446
[21] Discrete subgroups of semisimple Lie groups 1991
[22] Associative algebras 1982
[23] A course on Borel sets 1998
[24] Sur quelques séries dâinterpolation généralisant celles de Newton et de Stirling Uchenye Zapiski Moskov. Gos. Univ. Matematika 1939 17 48
[25] , On the complexity of the isomorphism relation for fields of finite transcendence degree J. Pure Appl. Algebra 2001 347 363
[26] The Banach-Tarski paradox 1985
[27] Ergodic theory and semisimple groups 1984
[28] Groups generating transversals to semisimple Lie group actions Israel J. Math. 1991 151 159
Cité par Sources :