The classification problem for torsion-free abelian groups of finite rank
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 233-258

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that for each $n \geq 1$, the classification problem for torsion-free abelian groups of rank $n+1$ is not Borel reducible to that for torsion-free abelian groups of rank $n$.
DOI : 10.1090/S0894-0347-02-00409-5

Thomas, Simon 1

1 Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
@article{10_1090_S0894_0347_02_00409_5,
     author = {Thomas, Simon},
     title = {The classification problem for torsion-free abelian groups of finite rank},
     journal = {Journal of the American Mathematical Society},
     pages = {233--258},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00409-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/}
}
TY  - JOUR
AU  - Thomas, Simon
TI  - The classification problem for torsion-free abelian groups of finite rank
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 233
EP  - 258
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/
DO  - 10.1090/S0894-0347-02-00409-5
ID  - 10_1090_S0894_0347_02_00409_5
ER  - 
%0 Journal Article
%A Thomas, Simon
%T The classification problem for torsion-free abelian groups of finite rank
%J Journal of the American Mathematical Society
%D 2003
%P 233-258
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00409-5/
%R 10.1090/S0894-0347-02-00409-5
%F 10_1090_S0894_0347_02_00409_5
Thomas, Simon. The classification problem for torsion-free abelian groups of finite rank. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 233-258. doi: 10.1090/S0894-0347-02-00409-5

[1] Adams, Scott Trees and amenable equivalence relations Ergodic Theory Dynam. Systems 1990 1 14

[2] Adams, Scot, Kechris, Alexander S. Linear algebraic groups and countable Borel equivalence relations J. Amer. Math. Soc. 2000 909 943

[3] Arnold, David M. Finite rank torsion free abelian groups and rings 1982

[4] Borel, Armand Linear algebraic groups 1991

[5] Corner, A. L. S. Every countable reduced torsion-free ring is an endomorphism ring Proc. London Math. Soc. (3) 1963 687 710

[6] Curtis, Charles W., Reiner, Irving Representation theory of finite groups and associative algebras 1962

[7] Dougherty, R., Jackson, S., Kechris, A. S. The structure of hyperfinite Borel equivalence relations Trans. Amer. Math. Soc. 1994 193 225

[8] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324

[9] Friedman, Harvey, Stanley, Lee A Borel reducibility theory for classes of countable structures J. Symbolic Logic 1989 894 914

[10] Fuchs, Lã¡Szlã³ Infinite abelian groups. Vol. I 1970

[11] Harrington, L. A., Kechris, A. S., Louveau, A. A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928

[12] Hjorth, Greg Around nonclassifiability for countable torsion free abelian groups 1999 269 292

[13] Hjorth, Greg, Kechris, Alexander S. Borel equivalence relations and classifications of countable models Ann. Pure Appl. Logic 1996 221 272

[14] Jã³Nsson, Bjarni On direct decomposition of torsion free Abelian groups Math. Scand. 1959 361 371

[15] Kechris, Alexander S. Countable sections for locally compact group actions Ergodic Theory Dynam. Systems 1992 283 295

[16] Kechris, Alexander S. Amenable versus hyperfinite Borel equivalence relations J. Symbolic Logic 1993 894 907

[17] Kechris, Alexander S. Classical descriptive set theory 1995

[18] Kechris, Alexander S. On the classification problem for rank 2 torsion-free abelian groups J. London Math. Soc. (2) 2000 437 450

[19] Krã³L, M. The automorphism groups and endomorphism rings of torsion-free abelian groups of rank two Dissertationes Math. (Rozprawy Mat.) 1967 76

[20] Rã¡Dl, Franz Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen Math. Z. 1939 429 446

[21] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[22] Pierce, Richard S. Associative algebras 1982

[23] Srivastava, S. M. A course on Borel sets 1998

[24] Gontcharoff, M. Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling Uchenye Zapiski Moskov. Gos. Univ. Matematika 1939 17 48

[25] Thomas, Simon, Velickovic, Boban On the complexity of the isomorphism relation for fields of finite transcendence degree J. Pure Appl. Algebra 2001 347 363

[26] Wagon, Stan The Banach-Tarski paradox 1985

[27] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

[28] Zimmer, Robert J. Groups generating transversals to semisimple Lie group actions Israel J. Math. 1991 151 159

Cité par Sources :