Simple homogeneous models
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 91-121

Voir la notice de l'article provenant de la source American Mathematical Society

Geometrical stability theory is a powerful set of model-theoretic tools that can lead to structural results on models of a simple first-order theory. Typical results offer a characterization of the groups definable in a model of the theory. The work is carried out in a universal domain of the theory (a saturated model) in which the Stone space topology on ultrafilters of definable relations is compact. Here we operate in the more general setting of homogeneous models, which typically have noncompact Stone topologies. A structure $M$ equipped with a class of finitary relations $\mathcal {R}$ is strongly $\lambda$-homogeneous if orbits under automorphisms of $(M,\mathcal {R})$ have finite character in the following sense: Given $\alpha$ an ordinal $\lambda \leq |M|$ and sequences $\bar {a}=\{ a_i:\:i\alpha \}$, $\bar {b}=\{ b_i:\:i\alpha \}$ from $M$, if $(a_{i_1},\dots ,a_{i_n})$ and $(b_{i_1},\dots ,b_{i_n})$ have the same orbit, for all $n$ and $i_1\dots $, then $f(\bar {a})=\bar {b}$ for some automorphism $f$ of $(M,\mathcal {R})$. In this paper strongly $\lambda$-homogeneous models $(M,\mathcal {R})$ in which the elements of $\mathcal {R}$ induce a symmetric and transitive notion of independence with bounded character are studied. This notion of independence, defined using a combinatorial condition called “dividing”, agrees with forking independence when $(M,\mathcal {R})$ is saturated. A concept central to the development of stability theory for saturated structures, namely parallelism, is also shown to be well-behaved in this setting. These results broaden the scope of the methods of geometrical stability theory.
DOI : 10.1090/S0894-0347-02-00407-1

Buechler, Steven 1 ; Lessmann, Olivier 2

1 Department of Mathematics, 255 Hurley Hall, University of Notre Dame, Notre Dame, Indiana 46556
2 Mathematical Institute, 24-29 St. Giles, Oxford University, Oxford OX1 3LB, United Kingdom
@article{10_1090_S0894_0347_02_00407_1,
     author = {Buechler, Steven and Lessmann, Olivier},
     title = {Simple homogeneous models},
     journal = {Journal of the American Mathematical Society},
     pages = {91--121},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00407-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00407-1/}
}
TY  - JOUR
AU  - Buechler, Steven
AU  - Lessmann, Olivier
TI  - Simple homogeneous models
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 91
EP  - 121
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00407-1/
DO  - 10.1090/S0894-0347-02-00407-1
ID  - 10_1090_S0894_0347_02_00407_1
ER  - 
%0 Journal Article
%A Buechler, Steven
%A Lessmann, Olivier
%T Simple homogeneous models
%J Journal of the American Mathematical Society
%D 2003
%P 91-121
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00407-1/
%R 10.1090/S0894-0347-02-00407-1
%F 10_1090_S0894_0347_02_00407_1
Buechler, Steven; Lessmann, Olivier. Simple homogeneous models. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 91-121. doi: 10.1090/S0894-0347-02-00407-1

[1] Buechler, Steven, Pillay, Anand, Wagner, Frank Supersimple theories J. Amer. Math. Soc. 2001 109 124

[2] Buechler, Steven Essential stability theory 1996

[3] Chatzidakis, Zoã©, Hrushovski, Ehud Model theory of difference fields Trans. Amer. Math. Soc. 1999 2997 3071

[4] Cherlin, G., Harrington, L., Lachlan, A. H. ℵ₀-categorical, ℵ₀-stable structures Ann. Pure Appl. Logic 1985 103 135

[5] Chang, C. C., Keisler, H. J. Model theory 1973

[6] Hart, Bradd, Kim, Byunghan, Pillay, Anand Coordinatisation and canonical bases in simple theories J. Symbolic Logic 2000 293 309

[7] Hrushovski, Ehud Stability and its uses 1997 61 103

[8] Hrushovski, Ehud Geometric model theory Doc. Math. 1998 281 302

[9] Hewitt, Edwin, Stromberg, Karl Real and abstract analysis. A modern treatment of the theory of functions of a real variable 1965

[10] Losinsky, S. Sur le procédé d’interpolation de Fejér C. R. (Doklady) Acad. Sci. URSS (N.S.) 1939 318 321

[11] Hrushovski, Ehud, Zilber, Boris Zariski geometries J. Amer. Math. Soc. 1996 1 56

[12] Iovino, Josã© Stable Banach spaces and Banach space structures. I. Fundamentals 1999 77 95

[13] Keisler, H. Jerome Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers 1971

[14] Kim, Byunghan Forking in simple unstable theories J. London Math. Soc. (2) 1998 257 267

[15] Lascar, Daniel On the category of models of a complete theory J. Symbolic Logic 1982 249 266

[16] Marker, David, Pillay, Anand Differential Galois theory. III. Some inverse problems Illinois J. Math. 1997 453 461

[17] Pillay, Anand Differential Galois theory. II Ann. Pure Appl. Logic 1997 181 191

[18] Pillay, Anand Differential Galois theory. I Illinois J. Math. 1998 678 699

[19] Shelah, Saharon Finite diagrams stable in power Ann. Math. Logic 1970/71 69 118

[20] Shelah, Saharon The lazy model-theoretician’s guide to stability Logique et Anal. (N.S.) 1975 241 308

[21] Shelah, Saharon Simple unstable theories Ann. Math. Logic 1980 177 203

[22] Shelah, S. Classification theory and the number of nonisomorphic models 1990

[23] Wagner, Frank Hyperdefinable groups in simple theories J. Math. Log. 2001 125 172

[24] Zilber, Boris Uncountably categorical theories 1993

Cité par Sources :