Rapinchuk, Andrei  1 ; Segev, Yoav  2 ; Seitz, Gary  3
@article{10_1090_S0894_0347_02_00393_4,
author = {Rapinchuk, Andrei and Segev, Yoav and Seitz, Gary},
title = {Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable},
journal = {Journal of the American Mathematical Society},
pages = {929--978},
year = {2002},
volume = {15},
number = {4},
doi = {10.1090/S0894-0347-02-00393-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/}
}
TY - JOUR AU - Rapinchuk, Andrei AU - Segev, Yoav AU - Seitz, Gary TI - Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable JO - Journal of the American Mathematical Society PY - 2002 SP - 929 EP - 978 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/ DO - 10.1090/S0894-0347-02-00393-4 ID - 10_1090_S0894_0347_02_00393_4 ER -
%0 Journal Article %A Rapinchuk, Andrei %A Segev, Yoav %A Seitz, Gary %T Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable %J Journal of the American Mathematical Society %D 2002 %P 929-978 %V 15 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/ %R 10.1090/S0894-0347-02-00393-4 %F 10_1090_S0894_0347_02_00393_4
Rapinchuk, Andrei; Segev, Yoav; Seitz, Gary. Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. Journal of the American Mathematical Society, Tome 15 (2002) no. 4, pp. 929-978. doi: 10.1090/S0894-0347-02-00393-4
[1] Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45
[2] , Involutions in Chevalley groups over fields of even order Nagoya Math. J. 1976 1 91
[3] , , , , 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985
[4] Arithmetic groups over function fields. I. A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups J. Reine Angew. Math. 1998 79 118
[5] Éléments de mathématique 1985 362
[6] , Multiplicative subgroups of finite index in a ring Proc. Amer. Math. Soc. 1992 885 896
[7] Conjugacy classes in the Weyl group Compositio Math. 1972 1 59
[8] Finite groups of Lie type 1985
[9] , The local structure of finite groups of characteristic 2 type Mem. Amer. Math. Soc. 1983
[10] Algebra 1965
[11] , Reductive subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1996
[12] Finiteness of quotient groups of discrete subgroups Funktsional. Anal. i Prilozhen. 1979 28 39
[13] Associative algebras 1982
[14] , Algebraic groups and number theory 1994
[15] , Multiplicative structure of division algebras over number fields and the Hasse norm principle Trudy Mat. Inst. Steklov. 1984 171 187
[16] Strong approximation for semi-simple groups over function fields Ann. of Math. (2) 1977 553 572
[17] On the group of norm 1 elements in a division algebra Math. Ann. 1988 457 484
[18] , Normal subgroups of 𝑆𝐿_{1,𝐷} and the classification of finite simple groups Proc. Indian Acad. Sci. Math. Sci. 1996 329 368
[19] , Valuation-like maps and the congruence subgroup property Invent. Math. 2001 571 607
[20] , The finite quotients of the multiplicative group of a division algebra of degree 3 are solvable Israel J. Math. 1999 373 380
[21] , The multiplicative group of a division algebra of degree 5 and Wedderburn’s factorization theorem 2000 475 486
[22] On finite homomorphic images of the multiplicative group of a division algebra Ann. of Math. (2) 1999 219 251
[23] Some applications of Wedderburn’s factorisation theorem Bull. Austral. Math. Soc. 1999 105 110
[24] The minimal base size of primitive solvable permutation groups J. London Math. Soc. (2) 1996 243 255
[25] , Conjugacy classes 1970 167 266
[26] Lectures on Chevalley groups 1968
[27] On a class of doubly transitive groups Ann. of Math. (2) 1962 105 145
[28] Algebraic and abstract simple groups Ann. of Math. (2) 1964 313 329
[29] Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.) 1978
[30] Multiplicative subgroups of finite index in a division ring Proc. Amer. Math. Soc. 1994 377 381
[31] Extending valuations to finite-dimensional division algebras Proc. Amer. Math. Soc. 1986 20 22
Cité par Sources :