Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable
Journal of the American Mathematical Society, Tome 15 (2002) no. 4, pp. 929-978

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. Let $D$ be a finite dimensional division algebra having center $K$, and let $N\subseteq D^{\times }$ be a normal subgroup of finite index. Suppose $D^{\times }/N$ is not solvable. Then we may assume that $H:=D^{\times }/N$ is a minimal nonsolvable group (MNS group for short), i.e. a nonsolvable group all of whose proper quotients are solvable. Our proof now has two main ingredients. One ingredient is to show that the commuting graph of a finite MNS group satisfies a certain property which we denote Property $(3\frac {1}{2})$. This property includes the requirement that the diameter of the commuting graph should be $\ge 3$, but is, in fact, stronger. Another ingredient is to show that if the commuting graph of $D^{\times }/N$ has Property $(3\frac {1}{2})$, then $N$ is open with respect to a nontrivial height one valuation of $D$ (assuming without loss of generality, as we may, that $K$ is finitely generated). After establishing the openness of $N$ (when $D^{\times }/N$ is an MNS group) we apply the Nonexistence Theorem whose proof uses induction on the transcendence degree of $K$ over its prime subfield to eliminate $H$ as a possible quotient of $D^{\times }$, thereby obtaining a contradiction and proving our main result.
DOI : 10.1090/S0894-0347-02-00393-4

Rapinchuk, Andrei 1 ; Segev, Yoav 2 ; Seitz, Gary 3

1 Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
2 Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel
3 Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1226
@article{10_1090_S0894_0347_02_00393_4,
     author = {Rapinchuk, Andrei and Segev, Yoav and Seitz, Gary},
     title = {Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable},
     journal = {Journal of the American Mathematical Society},
     pages = {929--978},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00393-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/}
}
TY  - JOUR
AU  - Rapinchuk, Andrei
AU  - Segev, Yoav
AU  - Seitz, Gary
TI  - Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 929
EP  - 978
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/
DO  - 10.1090/S0894-0347-02-00393-4
ID  - 10_1090_S0894_0347_02_00393_4
ER  - 
%0 Journal Article
%A Rapinchuk, Andrei
%A Segev, Yoav
%A Seitz, Gary
%T Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable
%J Journal of the American Mathematical Society
%D 2002
%P 929-978
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00393-4/
%R 10.1090/S0894-0347-02-00393-4
%F 10_1090_S0894_0347_02_00393_4
Rapinchuk, Andrei; Segev, Yoav; Seitz, Gary. Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. Journal of the American Mathematical Society, Tome 15 (2002) no. 4, pp. 929-978. doi: 10.1090/S0894-0347-02-00393-4

[1] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[2] Aschbacher, Michael, Seitz, Gary M. Involutions in Chevalley groups over fields of even order Nagoya Math. J. 1976 1 91

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A. 𝔸𝕋𝕃𝔸𝕊 of finite groups 1985

[4] Behr, Helmut Arithmetic groups over function fields. I. A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups J. Reine Angew. Math. 1998 79 118

[5] Bourbaki, Nicolas Éléments de mathématique 1985 362

[6] Bergelson, Vitaly, Shapiro, Daniel B. Multiplicative subgroups of finite index in a ring Proc. Amer. Math. Soc. 1992 885 896

[7] Carter, R. W. Conjugacy classes in the Weyl group Compositio Math. 1972 1 59

[8] Carter, Roger W. Finite groups of Lie type 1985

[9] Gorenstein, Daniel, Lyons, Richard The local structure of finite groups of characteristic 2 type Mem. Amer. Math. Soc. 1983

[10] Lang, Serge Algebra 1965

[11] Liebeck, Martin W., Seitz, Gary M. Reductive subgroups of exceptional algebraic groups Mem. Amer. Math. Soc. 1996

[12] Margulis, G. A. Finiteness of quotient groups of discrete subgroups Funktsional. Anal. i Prilozhen. 1979 28 39

[13] Pierce, Richard S. Associative algebras 1982

[14] Platonov, Vladimir, Rapinchuk, Andrei Algebraic groups and number theory 1994

[15] Platonov, V. P., Rapinchuk, A. S. Multiplicative structure of division algebras over number fields and the Hasse norm principle Trudy Mat. Inst. Steklov. 1984 171 187

[16] Prasad, Gopal Strong approximation for semi-simple groups over function fields Ann. of Math. (2) 1977 553 572

[17] Raghunathan, M. S. On the group of norm 1 elements in a division algebra Math. Ann. 1988 457 484

[18] Rapinchuk, Andrei, Potapchik, Alexander Normal subgroups of 𝑆𝐿_{1,𝐷} and the classification of finite simple groups Proc. Indian Acad. Sci. Math. Sci. 1996 329 368

[19] Rapinchuk, Andrei S., Segev, Yoav Valuation-like maps and the congruence subgroup property Invent. Math. 2001 571 607

[20] Rowen, L. H., Segev, Y. The finite quotients of the multiplicative group of a division algebra of degree 3 are solvable Israel J. Math. 1999 373 380

[21] Rowen, Louis H., Segev, Yoav The multiplicative group of a division algebra of degree 5 and Wedderburn’s factorization theorem 2000 475 486

[22] Segev, Yoav On finite homomorphic images of the multiplicative group of a division algebra Ann. of Math. (2) 1999 219 251

[23] Segev, Yoav Some applications of Wedderburn’s factorisation theorem Bull. Austral. Math. Soc. 1999 105 110

[24] Seress, ÁKos The minimal base size of primitive solvable permutation groups J. London Math. Soc. (2) 1996 243 255

[25] Springer, T. A., Steinberg, R. Conjugacy classes 1970 167 266

[26] Steinberg, Robert Lectures on Chevalley groups 1968

[27] Suzuki, Michio On a class of doubly transitive groups Ann. of Math. (2) 1962 105 145

[28] Tits, J. Algebraic and abstract simple groups Ann. of Math. (2) 1964 313 329

[29] Tits, Jacques Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.) 1978

[30] Turnwald, Gerhard Multiplicative subgroups of finite index in a division ring Proc. Amer. Math. Soc. 1994 377 381

[31] Wadsworth, Adrian R. Extending valuations to finite-dimensional division algebras Proc. Amer. Math. Soc. 1986 20 22

Cité par Sources :