Dirac cohomology, unitary representations and a proof of a conjecture of Vogan
Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 185-202 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $G$ be a connected semisimple Lie group with finite center. Let $K$ be the maximal compact subgroup of $G$ corresponding to a fixed Cartan involution $\theta$. We prove a conjecture of Vogan which says that if the Dirac cohomology of an irreducible unitary $(\mathfrak {g},K)$-module $X$ contains a $K$-type with highest weight $\gamma$, then $X$ has infinitesimal character $\gamma +\rho _{c}$. Here $\rho _{c}$ is the half sum of the compact positive roots. As an application of the main result we classify irreducible unitary $(\mathfrak {g},K)$-modules $X$ with non-zero Dirac cohomology, provided $X$ has a strongly regular infinitesimal character. We also mention a generalization to the setting of Kostant’s cubic Dirac operator.
DOI : 10.1090/S0894-0347-01-00383-6

Huang, Jing-Song 1 ; Pandžić, Pavle 2

1 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2 Department of Mathematics, University of Zagreb, PP 335, 10002 Zagreb, Croatia
@article{10_1090_S0894_0347_01_00383_6,
     author = {Huang, Jing-Song and Pand\v{z}i\'c, Pavle},
     title = {Dirac cohomology, unitary representations and a proof of a conjecture of {Vogan}},
     journal = {Journal of the American Mathematical Society},
     pages = {185--202},
     year = {2002},
     volume = {15},
     number = {1},
     doi = {10.1090/S0894-0347-01-00383-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00383-6/}
}
TY  - JOUR
AU  - Huang, Jing-Song
AU  - Pandžić, Pavle
TI  - Dirac cohomology, unitary representations and a proof of a conjecture of Vogan
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 185
EP  - 202
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00383-6/
DO  - 10.1090/S0894-0347-01-00383-6
ID  - 10_1090_S0894_0347_01_00383_6
ER  - 
%0 Journal Article
%A Huang, Jing-Song
%A Pandžić, Pavle
%T Dirac cohomology, unitary representations and a proof of a conjecture of Vogan
%J Journal of the American Mathematical Society
%D 2002
%P 185-202
%V 15
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00383-6/
%R 10.1090/S0894-0347-01-00383-6
%F 10_1090_S0894_0347_01_00383_6
Huang, Jing-Song; Pandžić, Pavle. Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 185-202. doi: 10.1090/S0894-0347-01-00383-6

[1] Bergmann, S., Marcinkiewicz, J. Sur les fonctions analytiques de deux variables complexes Fund. Math. 1939 75 94

[2] Everett, C. J., Jr. Annihilator ideals and representation iteration for abstract rings Duke Math. J. 1939 623 627

[3] Casselman, William, Osborne, M. Scott The 𝔫-cohomology of representations with an infinitesimal character Compositio Math. 1975 219 227

[4] Hotta, Ryoshi On a realization of the discrete series for semisimple Lie groups J. Math. Soc. Japan 1971 384 407

[5] Hotta, Ryoshi, Parthasarathy, R. A geometric meaning of the multiplicity of integrable discrete classes in 𝐿²(Γ\𝐺) Osaka Math. J. 1973 211 234

[6] Kumaresan, S. On the canonical 𝑘-types in the irreducible unitary 𝑔-modules with nonzero relative cohomology Invent. Math. 1980 1 11

[7] Parthasarathy, R. Dirac operator and the discrete series Ann. of Math. (2) 1972 1 30

[8] Salamanca-Riba, Susana A. On the unitary dual of real reductive Lie groups and the 𝐴_{𝑔}(𝜆) modules: the strongly regular case Duke Math. J. 1999 521 546

[9] Schmid, Wilfried On the characters of the discrete series. The Hermitian symmetric case Invent. Math. 1975 47 144

[10] Vogan, David A., Jr. Representations of real reductive Lie groups 1981

[11] Vogan, David A., Jr. Unitarizability of certain series of representations Ann. of Math. (2) 1984 141 187

[12] Vogan, David A., Jr., Zuckerman, Gregg J. Unitary representations with nonzero cohomology Compositio Math. 1984 51 90

[13] Wallach, Nolan R. Real reductive groups. I 1988

Cité par Sources :