Hilbert schemes, polygraphs and the Macdonald positivity conjecture
Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 941-1006

Voir la notice de l'article provenant de la source American Mathematical Society

We study the isospectral Hilbert scheme $X_{n}$, defined as the reduced fiber product of $(\mathbb {C}^{2})^{n}$ with the Hilbert scheme $H_{n}$ of points in the plane $\mathbb {C}^{2}$, over the symmetric power $S^{n}\mathbb {C}^{2} = (\mathbb {C}^{2})^{n}/S_{n}$. By a theorem of Fogarty, $H_{n}$ is smooth. We prove that $X_{n}$ is normal, Cohen-Macaulay and Gorenstein, and hence flat over $H_{n}$. We derive two important consequences. (1) We prove the strong form of the $n!$ conjecture of Garsia and the author, giving a representation-theoretic interpretation of the Kostka-Macdonald coefficients $K_{\lambda \mu }(q,t)$. This establishes the Macdonald positivity conjecture, namely that $K_{\lambda \mu }(q,t)\in {\mathbb N} [q,t]$. (2) We show that the Hilbert scheme $H_{n}$ is isomorphic to the $G$-Hilbert scheme $(\mathbb {C}^{2})^{n}{/\!\!/}S_n$ of Nakamura, in such a way that $X_{n}$ is identified with the universal family over $({\mathbb C}^2)^n{/\!\!/}S_n$. From this point of view, $K_{\lambda \mu }(q,t)$ describes the fiber of a character sheaf $C_{\lambda }$ at a torus-fixed point of $({\mathbb C}^2)^n{/\!\!/}S_n$ corresponding to $\mu$. The proofs rely on a study of certain subspace arrangements $Z(n,l)\subseteq (\mathbb {C}^{2})^{n+l}$, called polygraphs, whose coordinate rings $R(n,l)$ carry geometric information about $X_{n}$. The key result is that $R(n,l)$ is a free module over the polynomial ring in one set of coordinates on $(\mathbb {C}^{2})^{n}$. This is proven by an intricate inductive argument based on elementary commutative algebra.
DOI : 10.1090/S0894-0347-01-00373-3

Haiman, Mark 1

1 Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112
@article{10_1090_S0894_0347_01_00373_3,
     author = {Haiman, Mark},
     title = {Hilbert schemes, polygraphs and the {Macdonald} positivity conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {941--1006},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00373-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00373-3/}
}
TY  - JOUR
AU  - Haiman, Mark
TI  - Hilbert schemes, polygraphs and the Macdonald positivity conjecture
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 941
EP  - 1006
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00373-3/
DO  - 10.1090/S0894-0347-01-00373-3
ID  - 10_1090_S0894_0347_01_00373_3
ER  - 
%0 Journal Article
%A Haiman, Mark
%T Hilbert schemes, polygraphs and the Macdonald positivity conjecture
%J Journal of the American Mathematical Society
%D 2001
%P 941-1006
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00373-3/
%R 10.1090/S0894-0347-01-00373-3
%F 10_1090_S0894_0347_01_00373_3
Haiman, Mark. Hilbert schemes, polygraphs and the Macdonald positivity conjecture. Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 941-1006. doi: 10.1090/S0894-0347-01-00373-3

[1] Bergeron, N., Garsia, A. M. On certain spaces of harmonic polynomials 1992 51 86

[2] Brianã§On, Joã«L Description de 𝐻𝑖𝑙𝑏ⁿ𝐶{𝑥,𝑦} Invent. Math. 1977 45 89

[3] Brockman, William, Haiman, Mark Nilpotent orbit varieties and the atomic decomposition of the 𝑞-Kostka polynomials Canad. J. Math. 1998 525 537

[4] Cheah, Jan Cellular decompositions for nested Hilbert schemes of points Pacific J. Math. 1998 39 90

[5] Cherednik, Ivan Double affine Hecke algebras and Macdonald’s conjectures Ann. of Math. (2) 1995 191 216

[6] De Concini, Corrado, Procesi, Claudio Symmetric functions, conjugacy classes and the flag variety Invent. Math. 1981 203 219

[7] Ellingsrud, Geir, Strã¸Mme, Stein Arild On the homology of the Hilbert scheme of points in the plane Invent. Math. 1987 343 352

[8] Emsalem, Jacques Géométrie des points épais Bull. Soc. Math. France 1978 399 416

[9] Etingof, Pavel I., Kirillov, Alexander A., Jr. Macdonald’s polynomials and representations of quantum groups Math. Res. Lett. 1994 279 296

[10] Fogarty, John Algebraic families on an algebraic surface Amer. J. Math. 1968 511 521

[11] Garsia, Adriano M., Haiman, Mark A graded representation model for Macdonald’s polynomials Proc. Nat. Acad. Sci. U.S.A. 1993 3607 3610

[12] Garsia, A. M., Haiman, M. A remarkable 𝑞,𝑡-Catalan sequence and 𝑞-Lagrange inversion J. Algebraic Combin. 1996 191 244

[13] Garsia, A. M., Procesi, C. On certain graded 𝑆_{𝑛}-modules and the 𝑞-Kostka polynomials Adv. Math. 1992 82 138

[14] Kirillov, Anatol N., Noumi, Masatoshi Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39

[15] Kirillov, Anatol N., Noumi, Masatoshi Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39

[16] Green, Mark L. Generic initial ideals 1998 119 186

[17] Séminaire Bourbaki. Vol. 6 1995

[18] Haiman, Mark D. Conjectures on the quotient ring by diagonal invariants J. Algebraic Combin. 1994 17 76

[19] Haiman, Mark 𝑡,𝑞-Catalan numbers and the Hilbert scheme Discrete Math. 1998 201 224

[20] Hartshorne, Robin Residues and duality 1966

[21] Hartshorne, Robin Local cohomology 1967

[22] Hotta, R., Springer, T. A. A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups Invent. Math. 1977 113 127

[23] Ito, Yukari, Nakamura, Iku McKay correspondence and Hilbert schemes Proc. Japan Acad. Ser. A Math. Sci. 1996 135 138

[24] Ito, Y., Nakamura, I. Hilbert schemes and simple singularities 1999 151 233

[25] Kato, Shin-Ichi Spherical functions and a 𝑞-analogue of Kostant’s weight multiplicity formula Invent. Math. 1982 461 468

[26] Kirillov, Anatol N., Noumi, Masatoshi Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39

[27] Kirillov, Anatol N., Noumi, Masatoshi Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39

[28] Kraft, Hanspeter Conjugacy classes and Weyl group representations 1981 191 205

[29] Lapointe, Luc, Vinet, Luc Operator construction of the Jack and Macdonald symmetric polynomials 1998 271 279

[30] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Sur une conjecture de H. O. Foulkes C. R. Acad. Sci. Paris Sér. A-B 1978

[31] Lusztig, G. Green polynomials and singularities of unipotent classes Adv. in Math. 1981 169 178

[32] Lusztig, George Singularities, character formulas, and a 𝑞-analog of weight multiplicities 1983 208 229

[33] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[34] Macdonald, I. G. Affine Hecke algebras and orthogonal polynomials Astérisque 1996

[35] Kirillov, Anatol N., Noumi, Masatoshi Affine Hecke algebras and raising operators for Macdonald polynomials Duke Math. J. 1998 1 39

[36] Springer, T. A. A construction of representations of Weyl groups Invent. Math. 1978 279 293

[37] Tesler, Glenn Isotypic decompositions of lattice determinants J. Combin. Theory Ser. A 1999 208 227

Cité par Sources :