Non-axial self-similar hole filling for the porous medium equation
Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 737-782

Voir la notice de l'article provenant de la source American Mathematical Society

We construct non-axially symmetric self-similar solutions to the porous medium equation by showing that the family of radial self-similar solutions found by Aronson and Graveleau (1993) undergoes a sequence of symmetry breaking bifurcations as the parameter $m$ decreases from $m=\infty$ to $m=1$.
DOI : 10.1090/S0894-0347-01-00372-1

Angenent, S. 1 ; Aronson, D. 2

1 Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin 53706
2 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
@article{10_1090_S0894_0347_01_00372_1,
     author = {Angenent, S. and Aronson, D.},
     title = {Non-axial self-similar hole filling for the porous medium equation},
     journal = {Journal of the American Mathematical Society},
     pages = {737--782},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00372-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00372-1/}
}
TY  - JOUR
AU  - Angenent, S.
AU  - Aronson, D.
TI  - Non-axial self-similar hole filling for the porous medium equation
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 737
EP  - 782
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00372-1/
DO  - 10.1090/S0894-0347-01-00372-1
ID  - 10_1090_S0894_0347_01_00372_1
ER  - 
%0 Journal Article
%A Angenent, S.
%A Aronson, D.
%T Non-axial self-similar hole filling for the porous medium equation
%J Journal of the American Mathematical Society
%D 2001
%P 737-782
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00372-1/
%R 10.1090/S0894-0347-01-00372-1
%F 10_1090_S0894_0347_01_00372_1
Angenent, S.; Aronson, D. Non-axial self-similar hole filling for the porous medium equation. Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 737-782. doi: 10.1090/S0894-0347-01-00372-1

[1] Angenent, S. B., Aronson, D. G. The focusing problem for the radially symmetric porous medium equation Comm. Partial Differential Equations 1995 1217 1240

[2] Angenent, S. B., Aronson, D. G. Intermediate asymptotics for convergent viscous gravity currents Phys. Fluids 1995 223 225

[3] Aronson, Donald G., Bã©Nilan, Philippe Régularité des solutions de l’équation des milieux poreux dans 𝑅^{𝑁} C. R. Acad. Sci. Paris Sér. A-B 1979

[4] Aronson, D. G. The porous medium equation 1986 1 46

[5] Aronson, D. G., Gil, O., Vã¡Zquez, J. L. Limit behaviour of focusing solutions to nonlinear diffusions Comm. Partial Differential Equations 1998 307 332

[6] Aronson, D. G., Graveleau, J. A self-similar solution to the focusing problem for the porous medium equation European J. Appl. Math. 1993 65 81

[7] Barenblatt, Grigory Isaakovich Scaling, self-similarity, and intermediate asymptotics 1996

[8] Bender, Carl M., Orszag, Steven A. Advanced mathematical methods for scientists and engineers 1978

[9] Bergh, Jã¶Ran, Lã¶Fstrã¶M, Jã¶Rgen Interpolation spaces. An introduction 1976

[10] Betelãº, S. I., Aronson, D. G., Angenent, S. B. Renormalization study of two-dimensional convergent solutions of the porous medium equation Phys. D 2000 344 359

[11] Chow, Shui Nee, Hale, Jack K. Methods of bifurcation theory 1982

[12] Folland, Gerald B. Introduction to partial differential equations 1976

[13] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[14] Golubitsky, Martin, Stewart, Ian, Schaeffer, David G. Singularities and groups in bifurcation theory. Vol. II 1988

[15] Hochstadt, Harry The functions of mathematical physics 1986

[16] Hã¶Rmander, Lars The analysis of linear partial differential operators. I 1983

[17] Kato, Tosio Perturbation theory for linear operators 1976

[18] Da Prato, G., Grisvard, P. Sommes d’opérateurs linéaires et équations différentielles opérationnelles J. Math. Pures Appl. (9) 1975 305 387

[19] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

[20] Whittaker, E. T., Watson, G. N. A course of modern analysis 1996

Cité par Sources :