On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises
Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 843-939

Voir la notice de l'article provenant de la source American Mathematical Society

We complete the proof that every elliptic curve over the rational numbers is modular.
DOI : 10.1090/S0894-0347-01-00370-8

Breuil, Christophe 1 ; Conrad, Brian 2, 3 ; Diamond, Fred 4 ; Taylor, Richard 2

1 Département de Mathématiques, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
2 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
3 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
4 Department of Mathematics, Brandeis University, Waltham, Massachusetts 02454
@article{10_1090_S0894_0347_01_00370_8,
     author = {Breuil, Christophe and Conrad, Brian and Diamond, Fred and Taylor, Richard},
     title = {On the modularity of elliptic curves over {\dh}: {Wild} 3-adic exercises},
     journal = {Journal of the American Mathematical Society},
     pages = {843--939},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00370-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00370-8/}
}
TY  - JOUR
AU  - Breuil, Christophe
AU  - Conrad, Brian
AU  - Diamond, Fred
AU  - Taylor, Richard
TI  - On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 843
EP  - 939
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00370-8/
DO  - 10.1090/S0894-0347-01-00370-8
ID  - 10_1090_S0894_0347_01_00370_8
ER  - 
%0 Journal Article
%A Breuil, Christophe
%A Conrad, Brian
%A Diamond, Fred
%A Taylor, Richard
%T On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises
%J Journal of the American Mathematical Society
%D 2001
%P 843-939
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00370-8/
%R 10.1090/S0894-0347-01-00370-8
%F 10_1090_S0894_0347_01_00370_8
Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises. Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 843-939. doi: 10.1090/S0894-0347-01-00370-8

[1] Berthelot, Pierre, Breen, Lawrence, Messing, William Théorie de Dieudonné cristalline. II 1982

[2] Breuil, Christophe Schémas en groupe et modules filtrés C. R. Acad. Sci. Paris Sér. I Math. 1999 93 97

[3] Carayol, Henri Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert Ann. Sci. École Norm. Sup. (4) 1986 409 468

[4] Carayol, Henri Sur les représentations galoisiennes modulo 𝑙 attachées aux formes modulaires Duke Math. J. 1989 785 801

[5] Conrad, Brian Ramified deformation problems Duke Math. J. 1999 439 513

[6] Conrad, Brian, Diamond, Fred, Taylor, Richard Modularity of certain potentially Barsotti-Tate Galois representations J. Amer. Math. Soc. 1999 521 567

[7] De Jong, A. J. Finite locally free group schemes in characteristic 𝑝 and Dieudonné modules Invent. Math. 1993 89 137

[8] Deligne, Pierre, Serre, Jean-Pierre Formes modulaires de poids 1 Ann. Sci. École Norm. Sup. (4) 1974

[9] Diamond, Fred The refined conjecture of Serre 1995 22 37

[10] Diamond, Fred On deformation rings and Hecke rings Ann. of Math. (2) 1996 137 166

[11] Diamond, Fred, Taylor, Richard Lifting modular mod 𝑙 representations Duke Math. J. 1994 253 269

[12] Ekedahl, Torsten An effective version of Hilbert’s irreducibility theorem 1990 241 249

[13] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV Inst. Hautes Études Sci. Publ. Math. 1967 361

[14] Rosenblatt, Alfred Sur les points singuliers des équations différentielles C. R. Acad. Sci. Paris 1939 10 11

[15] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[16] Gã©Rardin, Paul Facteurs locaux des algèbres simples de rang 4. I 1978 37 77

[17] Langlands, Robert P. Base change for 𝐺𝐿(2) 1980

[18] Manoharmayum, J. Pairs of mod 3 and mod 5 representations arising from elliptic curves Math. Res. Lett. 1999 735 754

[19] Mazur, B. Number theory as gadfly Amer. Math. Monthly 1991 593 610

[20] Raynaud, Michel Schémas en groupes de type (𝑝,…,𝑝) Bull. Soc. Math. France 1974 241 280

[21] Ribet, Kenneth A. Galois representations attached to eigenforms with Nebentypus 1977 17 51

[22] Shepherd-Barron, N. I., Taylor, R. 𝑚𝑜𝑑2 and 𝑚𝑜𝑑5 icosahedral representations J. Amer. Math. Soc. 1997 283 298

[23] Serre, Jean-Pierre Local fields 1979

[24] Serre, Jean-Pierre Sur les représentations modulaires de degré 2 de 𝐺𝑎𝑙(\overline{𝐐}/𝐐) Duke Math. J. 1987 179 230

[25] Shimura, Goro On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields Nagoya Math. J. 1971 199 208

[26] Shimura, Goro Introduction to the arithmetic theory of automorphic functions 1971

[27] Tate, J. T. 𝑝-divisible groups 1967 158 183

[28] Taylor, Richard, Wiles, Andrew Ring-theoretic properties of certain Hecke algebras Ann. of Math. (2) 1995 553 572

[29] Tunnell, Jerrold Artin’s conjecture for representations of octahedral type Bull. Amer. Math. Soc. (N.S.) 1981 173 175

[30] Weil, Andr㩠Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen Math. Ann. 1967 149 156

[31] Weil, Andr㩠Scientific works. Collected papers. Vol. I (1926–1951) 1979

[32] Wiles, Andrew Modular elliptic curves and Fermat’s last theorem Ann. of Math. (2) 1995 443 551

Cité par Sources :