Construction of tame supercuspidal representations
Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 579-622

Voir la notice de l'article provenant de la source American Mathematical Society

We give a quite general construction of irreducible supercuspidal representations and supercuspidal types (in the sense of Bushnell and Kutzko) of $p$-adic groups. In the tame case, the construction should include all known constructions, and it is expected that this gives all supercuspidal representations. We also give a conjectural Hecke algebra isomorphism, which can be used to analyze arbitrary irreducible admissible representations, following the ideas of Howe and Moy.
DOI : 10.1090/S0894-0347-01-00363-0

Yu, Jiu-Kang 1, 2

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08540
2 Department of Mathematics, University of Maryland, College Park, Maryland 20742
@article{10_1090_S0894_0347_01_00363_0,
     author = {Yu, Jiu-Kang},
     title = {Construction of tame supercuspidal representations},
     journal = {Journal of the American Mathematical Society},
     pages = {579--622},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00363-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00363-0/}
}
TY  - JOUR
AU  - Yu, Jiu-Kang
TI  - Construction of tame supercuspidal representations
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 579
EP  - 622
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00363-0/
DO  - 10.1090/S0894-0347-01-00363-0
ID  - 10_1090_S0894_0347_01_00363_0
ER  - 
%0 Journal Article
%A Yu, Jiu-Kang
%T Construction of tame supercuspidal representations
%J Journal of the American Mathematical Society
%D 2001
%P 579-622
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00363-0/
%R 10.1090/S0894-0347-01-00363-0
%F 10_1090_S0894_0347_01_00363_0
Yu, Jiu-Kang. Construction of tame supercuspidal representations. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 579-622. doi: 10.1090/S0894-0347-01-00363-0

[1] Adler, Jeffrey D. Refined anisotropic 𝐾-types and supercuspidal representations Pacific J. Math. 1998 1 32

[2] Bushnell, Colin J., Kutzko, Philip C. The admissible dual of 𝐺𝐿(𝑁) via compact open subgroups 1993

[3] Bushnell, Colin J., Kutzko, Philip C. Smooth representations of reductive 𝑝-adic groups: structure theory via types Proc. London Math. Soc. (3) 1998 582 634

[4] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[5] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[6] Corwin, Lawrence A construction of the supercuspidal representations of 𝐺𝐿_{𝑛}(𝐹),𝐹𝑝-adic Trans. Amer. Math. Soc. 1993 1 58

[7] Gã©Rardin, Paul Weil representations associated to finite fields J. Algebra 1977 54 101

[8] Howe, Roger E. Tamely ramified supercuspidal representations of 𝐺𝑙_{𝑛} Pacific J. Math. 1977 437 460

[9] Howe, Roger, Moy, Allen Hecke algebra isomorphisms for 𝐺𝐿(𝑛) over a 𝑝-adic field J. Algebra 1990 388 424

[10] Humphreys, James E. Linear algebraic groups 1975

[11] Koch, Helmut, Zink, Ernst-Wilhelm Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisionsalgebren über lokalen Körpern (der zahme Fall) Math. Nachr. 1980 83 119

[12] Lusztig, George Classification of unipotent representations of simple 𝑝-adic groups Internat. Math. Res. Notices 1995 517 589

[13] Morris, Lawrence Level zero 𝐺-types Compositio Math. 1999 135 157

[14] Morris, Lawrence Some tamely ramified supercuspidal representations of symplectic groups Proc. London Math. Soc. (3) 1991 519 551

[15] Rothe, Erich Topological proofs of uniqueness theorems in the theory of differential and integral equations Bull. Amer. Math. Soc. 1939 606 613

[16] Morris, Lawrence Tamely ramified intertwining algebras Invent. Math. 1993 1 54

[17] Moy, Allen Local constants and the tame Langlands correspondence Amer. J. Math. 1986 863 930

[18] Moy, Allen, Prasad, Gopal Unrefined minimal 𝐾-types for 𝑝-adic groups Invent. Math. 1994 393 408

[19] Moy, Allen, Prasad, Gopal Jacquet functors and unrefined minimal 𝐾-types Comment. Math. Helv. 1996 98 121

[20] Serre, Jean-Pierre Linear representations of finite groups 1977

[21] Springer, T. A. Reductive groups 1979 3 27

[22] Steinberg, Robert Torsion in reductive groups Advances in Math. 1975 63 92

[23] Tits, J. Reductive groups over local fields 1979 29 69

Cité par Sources :